AGARD-LS-73

LIERRHY

TECHNICAL PEPORT SECTION
HAVAL POSTGRALUATE SCHOOCL
MONTEREY, CALIFORNIA 8304¢

ﬂ@,?geq ___AGARD-LS-73

JE\(G3/5\) 831 D)

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT I‘:‘S‘,

7RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

LECTURE SERIES No. 73

on

Computational Methods for
Inviscid and Viscous

Two-and-Three-Dimensional
Flow Fields

NORTH ATLANTIC TREATY ORGANIZATION —

DISTRIBUTION AND AVAILABILITY
ON BACK COVER







AGARD-LS-73

NORTH ATLANTIC TREATY ORGANISATION
ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD)

AGARD Lecture Series No.73
COMPUTATIONAL METHODS FOR INVISCID AND VISCOUS
TWO-AND-THREE-DIMENSIONAL FLOW FIELDS

The material in this book has been assembled to support a Lecture Series under the joint
sponsorship of the Fluid Dynamics Panel and the Consultant and Exchange Programme of AGARD,
and the von Kdrmdn Institute for Fluid Dynamics (VKI). The Series was presented on
17—22 February 1975 at the von Karman Institute, Brussels, Belgium.




THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of
science and technology relating to aerospace for the following purposes: .

— Exchanging of scientific and technical information;

— Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence
posture;

— Improving the co-operation among member nations in aerospace research and development;

— Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the
field of acrospace research and development;

— Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations
in connection with research and development problems in the aerospace field;

— Providing assistance to member nations for the purpose of increasing their scientific and technical potential;

— Recommending effective ways for the member nations to use their research and development capabilities
for the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which are
composed of experts appointed by the National Delegates, the Consultant and Exchange Program and the Aerospace
Applications Studies Program. The results of AGARD work are reported to the member nations and the NATO
Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published February 1975
Copyright © AGARD 1975

532.516 : 532.526.4

&

Printed by Technical Editing and Reproduction Ltd
Harford House, 7—9 Charlotte St, London, WIP 1HD

e




PREFACE

This Lecture Series, jointly sponsored by the Fluid Dynamics Panel, the Consultant
Exchange Programme of AGARD and the von Kirman Institute is a follow-up of two
other Lecture Series on the same general subject. The aim of this Series is to make fluid
dynamicists interested in numerical integration techniques familiar with the latest develop-
ments in the field. Although emphasis is placed on application some lectures are on
fundamental mathematical aspects.

Experience of the last four years has shown that the joint AGARD-VKI Lecture
Series as well as the VKI Courses on Numerical Methods in Fluid Dynamics, held in a
bi-annual cycle, have established themselves as an internationally recognised forum for
stimulating discussion and sound learning of this rapidly growing field. Each year, more
than a hundred participants from various countries in Europe, USA and Canada have
attended these Courses. The success of these Lectures is also reflected by the numerous
requests received by the National Distribution Centres of AGARD for the previous
publications: AGARD Lecture Series 48 (Numerical Methods in Fluid Dynamics) and
Lecture Series 64 (Advances in Numerical Fluid Dynamics).

The topics covered in the present Lecture Series comprise numerical stability of
hyperbolic partial differential equations, foundation and application of the finite-element

method in fluid dynamics; computational methods for laminar and turbulent boundary
layers in two-and-three-dimensional flows, numerical solution of the Navier-Stokes
equation and separated transonic and supersonic flows at high Reynolds numbers. Finally,
it is pointed out that the first results obtained with the new Illiac IV computer for viscous
flow simulation are being discussed in this Lecture Series.

Egon KRAUSE
Lecture Series Director
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1-1
FLOW ANALYSIS THROUGH NUMERICAL TECHNIQUES

Egon Krause
Aerodynamisches institut
Rheinlsch-Westfédlische Technische Hochschule Aachen
Aachen, Germany

SUMMARY

Fiow analysis by using numerical techniques is demonstrated in this article. Results obtained
from integrations of the governing equations are compared with experimental data of the recent literature,
The following problems wiil be discussed: The inviscid flow about a sphere at superrsonic Mach-numbers
ranging from Mg = 1.08 to My, = 5.0, calculated with Rusanov!'s algorithm; incompressible and com-
pressible laminar and turbuient boundary iayers on Infinite swept wings, caiculated with second- and
fourth-order accuracy for three different scalar closure assumptions. Hypersonic iaminar and turbulent
siot injection of frozen flow (He and Hz) and flow in approximated chemicai equilibrium (H2). Finally
applications of finlte-difference soiutions will be discussed for fuily viscous fiows in bio-fluidmechanical
probiems,

1. INTRODUCTION

Rapid development of new numerical integration procedures has provided the fluid mechanician
with new toois for flow anaiysis. During the past decade numerical techniques have been appiied in ali
branches of the fieid with increasing number. A survey recentiy made in Ref. [I] shows that in the
leading scientlfic engineering journais the number of articies using predominantiy numerical methods has
increased from one percent in 1963 to 15-20 percent in 1973 of ail articies published. it is also interesting
that the new methods were immediately used for design purposes. For example, in Ref, [2] a finite-
difference solution of the smali perturbation form of the potential equation was employed to determine the
inviscid surface pressure distribution of the three-dimensionai flow about the whole airfoil of the C-141
airplane, This is a remarkable advancement and it is safe to say that in the future design of aircraft and
spacecraft wiii reiy more heaviiy on prediction methods than was possible in the past. Pressure distribu-
tions wili to a greater extent be determined from numericai integration of the Euler equations as skin-
friction coefficients wiil be obtained from finite-difference solutions of Prandti's boundary-iayer equa-
tions for three-dimensional fiows, This is of Importance since control of the boundary layer on wings
and other wetted surfaces can result in substantial drag reduction. Some of the goalis which can be
achieved in the near future were recently described in Ref. [3] If it is possible to control the boundary
layer to such a degree that a large portion of the flow can be maintained laminar, ten to twenty percent
lower operating costs in comparison to the "turbuient! design wouid result. However, before such pre-
dictions become possible, more power ful methods of analysis than those presently in use wiil have to be
developed. For this reason, it wiil be interesting to see how the fourth computer generation, to be in
operation soon, will affect the advancement of numericai techniques. Although the new paraliel machines
will not cure our stability or convergence problems and although they wiii force us to deveiop new methods
of solutions and programming techniques, they wili cut down computation times by a factor of the order
of one hundred, perhaps more. This decrease in computation time wiill bring a number of problems which
could not be tackled untii now into our reach.

in this article a few results of recent flow calculations will be described in comparison to experi-
mentai data. The purpose of this comparison is twofold: First, to demonstrate the accuracy of presently
avaliabie finite-difference sojutions and secondly, to show the degree of complexity of the flow probiems
which can be solved. We begin with finite-difference solutions of the Euler equations for supersonic flow
about a sphere and contlnue with a description of compiex boundary-layer problems and finally fully
viscous Incompressible internal flows,

2. THREE-DIMENSIONAL SUPERSONIC INVISCID FLOWS ABOUT BLUNT BODIES

There are several aigorithms avaiiable through which such fiows can be determined. Of the artificial
viscosity methods Rusanov!s algorithm has often been claimed to be superior in accuracy in comparlson
to others., The particularities of the method are mainiy based on the introduction of artificial flux terms
for friction, conduction and diffusion with variable artificial transport coefficients. In addition of more
practical importance is the use of different step sizes in the finite-difference formulation. However,
the accuracy of Rusanov's method could so far only be achieved in long computation times. Reiativeiy
small time steps had to be employed in the integration as the limiting time step derived by Lyubimov and
Rusanov from a stability analysis for frozen coefficients appeared to be very restrictiv. In addition a
large number of iterations had lo be carried out during the transient period. In order to overcome this
difflculty, Forster, Roesner and Weiland attempted trial calcuiations with the aim to detect as to whether
or not the stabliiity condition as given by L_yubimov and Rusanov could not be loosened for the first phase
of the integration. This attempt proved to be successful as several comparlson calculations have shown.
in addition the method seems to be well suited for supersonic flow calculations for Mach numbers only
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slightly larger than unity. Before we discuss resuits for such flows we willl demonstrate the accuracy

of the method for hypersonic Mach numbers: The surface pressure, the density distribution along the
z-axis between stagnation point and shock, the shock shape and the sonic line as determined ex5er-lmem-
ally for a sphere by Segr]ey and Kahl [4] agree well with the predictions described in Ref. [5] . This
Is shown in Figs. 1 -3 °, where for a hypersonic Mach number of My, =5, pressure coeffient, non-
dimensionalized density shock shape and sonic line are plotted versus normalized coordinates indicated
In the Figs. Because of the very satisfactory agreement between measured and calculated pressures,
shock shape and sonic line in Figs, 1 and 2, it can be concluded that there are some anomalies in the
measured density distribution, in particular the three points in the middle of Fig. 2.

1 —<5Q ! With decreasing fi
X g free-stream
Mg =5.017

Mach number the rate of convergence
w =14 increases markedly, Yet the accura-
cy of Rusanov's method remains the
cpmox same as for high supersonic or
hypersonic flows, Gooderum!s and
Wood's density measurements on
5 the surface and along the z-axis
’ of a sphere [6] confirm the accura-
cy of the resuits obtained in Ref. [5]
A comparison of calculated and
N meaStir)ed data [s given in Figs. 4
and 5" /. The shock shape is equaliy
o EXPERIMENTS, REF[[’] \ well predicted (Flg. 6) for M= 1. 3.
—RUSANOV - ALGORITHM, REF[5] \N Some further comparisons are
5 - : + shown for even a lower Mach number
0 .5 1 15 w in Fig. 7. In Ref. [7] Stilp deter-
mined experimentally the slope of
the front shock of a sphere for free-
+) stream Mach numbers as low as
Mg = 1.079 and Mg = 1.109. The comparison in Fig. 7 shows that Rusanov's method predicts the
measured data with sufficlent accuracy although the free-stream Mach number of the calculation was not
exactly the same as that of the experiments. 6

0

Fig. 1 Surface pressure distribution on a sphere

In the integration of the transonic flow fields
the number of net points varied between 17 and 13
In the direction normal to the surface and between Moo:s'017
34 and 27 in the tangential directlon. Details of - L w=14
the method of Integration are described in [8] gco o ’
Reduction of computation time was shown to be o
possible. Firstresults are reported In [ 9]. By
means of a detailed stability analysis in particular o)
of the implicit part of the solutlon, a substantial
increase in the rate of convergence was obtained. 5 O—
These investigations will be published In the near
future.

Rusanov's method has in the meantime been o EXPER'MENTS,REFUJ
applied to flow fields about sphere-cone combina-
tlons at angle of attack. It is reported in [5] that —— RUSANOQV - ALGORITHM,REF[5]
the convergence rate is fast as long as the super-
sonic part of the flow fleld is kept small,

3. THREE-DIMENSIONAL BOUNDARY LAYERS L

Conslderable progress has been made in the 0 S E W
development of integration methods for three- BODY SHOCK
dimensional boundary layers, A descriptlon of a
method adapted to infinite swept wings |s given
in [10]; a more general method Is described in
[Il] and [12_]. Both second-and fourth-order accuracy can be used in implicit, locally linearized dlfference
equations. Eddy viscosity models can easily be incorporated in the Integration procedures [10]. Care
must, however, be exerclsed in the calculation of turbulent flows in general and of large cross-flows.
Because of large velocity gradients near the wall and large variations of the cross correlations in the
outer portion of the boundary layer large numerical errors may occur. These may then falsify the pre-

Fig. 2 Density distribution between shock and
body of a sphere"'

+)

The data shown in Figs. 2, 3, 5, and 7 were provided by C. Weiland who carried out the details
of the integration descrlbed in Ref. [5]
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L~ diction considerably and in comparison to
| r / experiment wrong conclusions may be drawn
e for the validity of the closing assumptions,

For large crossflows the scalar assumption
often employed in eddy viscosity models

—19
/ brakes down.

For laminar flows there are, in general

/ no major difficulties as long as all derivatives
are of order unity., Several boundary-layer

— 1 / oS “\ flows over swept wings with infinite aspect
ratio have been analysed with the method of
1<% Mo=5017 solution described in [10]. The following
y<\ w =14 results were obtalned for free-stream Mach
numbers Mg, = 0,649, 0.749 and 1. 298 and
05 Reynolds numbers of approximately 3- 106.
° EXPERlMENTS,REF[L] The sweep angle ¥ of the wing was assumed
to be zero for the first Mach number, 30° for
— RUSANOV-ALGORITHM, the second and 60° for the third. The pressure
REF(S] distribution was determined experimentally
| | | | | for the upper surface of the wing in [13], In
25 0 5 10 Z/R 15 all three cases considered supersonlc flow

exists and extends 20 percent of the chord,

Fig. 3 Shiotle shagis and senie Im? i where a shock can be identified. The pressure

flow field about a spher-e+

a “—j’_
25 o=
o, 9 o
25 °| o L/'
N . ol
%, o EXPERIMENTS, REF(6] Sof ] o[ Meo182
o —RUSANQV -ALGORITHM, ]
REF[5] 20 5
20> .0%
\ R o }"‘/"‘
o ©O
= 5 o </ /
-\ o // Moo =13 /
15 \\ //‘
"1 o EXPERIMENTE, REF[6)
|1 M, =11 ‘
i — 2 —— RUSANOV -ALGORITHM,
REF[S)
10 | 1
10 F Mo =11 0 8¢ 38 7 6 5 & 3 2 1 0
SHOCK B80DY
Mgp=13
Fig. 5 Density distribution along the z-axis
Mo =162 +)
\ of supersonic flow about a sphere
LN |
4] 20 4«0 60 80 100 wi 120 coefficient is depicted in the upper part of Flg, B.

The boundary-layer characteristics were deter-
mined with an adapted version of the solution for
fully three-dimensional flows of [II]. The modifi-
cation of the solution was carried out by

E.H. Hirschel, who also provided the data shown in Fig. 8. The skin friction attains a maximum a short
distance downstream from the stagnation line. For # = 0 the maximum is about two and one half times
higher than for f = 60°. Separation is observed at about 20 percent of the chord. Considerable flow
deflection in the boundary layer takes place near the maximum of the shearing stress. For y = 60°, the
direction of the limiting stream-lines near the wall deviates by some 20° from that of the external flow.

Fig. 4 Surface density distribution
on a sphere

An incompressible boundary layer on a swept wing of infinite aspect ratio was investigated experi-~
mentally by Altman and Hayter [MJ and more recently by Adams [15], who developed a second-order
finite-difference solution for Infinite-swept wing condltions. The pressure distribution is that of the
NACA 63,-012 section airfoil at zero angle of attack. In the experiments transition was artlficially
enforced at 20 percent of the chord for a Reynolds number of §. 4- 106, zero |Ift conditions and a sweep
angle of # = 45°, The skin friction coefficients as calculated with the solution of Ref, [IO] are shown
in Fig. 9. The integration was carrled out by U, Miller of the Aerodynamische Institut with a second-
order solution (abbreviated 2.0 in Fig. 9 and subsequent Figs. ) together with the closure relations equa-
tions (2. 18) and (2. 19) of Ref.[ 10], which yleld almost the same results except for a short distance down-
stream from the point where transition was enforced.

]
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—RUSANOV-;LGORITHM, : 100 o M =1079
REFISI "R | M°° - 11 09} EXPERIMENTS,REF(7)
~~=EXPERIMENTS, REF(6] @ =
o / — Mg =11 RUSANOV-ALGORITHM,
3 REFI[S]
90
Mm:'l 3
: 80 N
a \ a G
4\
1 |
i 70
: 0 2 4 6 8 r/R10
Fig. 7 Angle of the front shock about a sphere
near sonic conditions™
1 g 0 / 1
. ) LA/R=0992- *R

Fig. 6 Shock shape and sonic line in an
inviscid flow field about a sphere

-241
—J--—«\. 6 ] ‘
\- c 1 A‘ Re:S.l.-lOs
'\p 3 CyiRe (&S NACA 63,-012
Mw @(ol -20\ . a.:oo
0694) 0 LAMINAR
0749| 30 || 18 LOW— \
1.298| 60
[ -16 - \
Re=310° , Pr=075 | \}
- -1.4
=+ \&
— + -12 0
0 0.2 04 06 08 10
x/C
80 N
\ Fig. 9 Skin-friction coefficient calculated
\ QUTER EDGE g.
e° \ /1 wALL STREAM- LINE with the solution of Ref, [IOJ for the
\ \\ A \ measurements of Ref. [M]
\ — !
40 s T S
\\__¥=60 :
s \_’_/ / "0:300 B /
20 B I S e e e e e etes S In Fig. 10 of Ref. [10], the displacement
thickness d * and momentum thickness ©
0
o 004 008 012 016 X /C 022 as calculated with the solution of Ref. [15]
and of Ref. [IOJ are compared with the
Fig. 8 Pressure-, skin-friction coefficlent and experimental data, which correspond to
flow turning angle in a laminar compressible those shown in Fig. 9. Deviations from
boundary layer on the upper surface of a the measured data can be noted immediately
swept wing with infinite aspect ratlo downstream from the transition point, but

otherwise the accuracy of all three predic-
tions is acceptable. The displacement and the momentum thickness are evaluated for the x-component alone.
The small deviations in the predictions are due to the differences in the closure assumptions and can also
be noted in the velocity profiles (Fig. 11). At 50 percent chord the predictions obtained with the closure
assumptions (2. 18) and (2. 19) of Ref. [10] show slightly fuller velocity profiles than those of Ref. [15].
Further downstream at x/c = 0.6 all three predictions give virtually the same values; moreover, the agree-
ment with the measurements is Indeed good but not surprising since the pressure gradient Is very small,
The exchange coefficlents are then at least approximately the same and the scalar assumption is justified.
On the other hand, the comparison in Fig. 11 does not fully confirm the validity of the three closure
assumptions for three-dimensional boundary layers, Since the pressure gradient in the y-direction
vanishes identically and is small in the x-direction the flow deviates only little from constant pressure
conditions in the vicinity of 50 to 60 percent of the chord.
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Re =5410°
NACA 63,-012
0004 o =0° |/
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EXPERIMENTS REF 14 021820
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Fig. 10 Comparison of measured displacement
and momentum thickness of Ref.[la]
with predictions of Ref. [15] and of
Ref. [10]
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Fig. 12 Comparison of measured skin-friction

coefficients with predictions of present
second- and fourth-order solution. The
curve which ends at point 8 is the pre-
diction of Ref, [17]. The dashed lines
give the skin-friction for d*based on
the u-component of the velocity.

001 . ,
Re=5410®
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0008
0.006
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0
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Fig. 11 Comparison of measured velo-
city profiles of Ref. [14] with
predictions of Ref, [15] and

of Ref. [10]

Large pressure gradients in the x-direc-
tion were enforced by van den Berg and
Elsenaar in their experiment on an infinite
swept wing [16]. The oncoming flow of the
free-stream is incompressible with a Reynolds
number of about 3, 1- 106. The sweep angle is
35° and the pressure gradient is positiv and
large enough to lead to separation, W.Kordulla
of the Aerodynamische Institut carried out
calculations in which all three closure assump-
tions, equations (2. 18), (2.19), and (2. 21) of
Ref, [IO] were employed. Both, second- and
fourth-order algorithms were used.

The range of predictions is shown for the
shearing stress in the upper part of Fig. 12.
Although there is agreement downstream from
the leading edge of the wing, the predictions
fail near separation. The details of the calcu-
lation are shown In the middle of Fig. 12. It is
seen that the inclusion of the pressure gradient
in the closure assumption (2. 21) gives better
agreement than equations (2. 18) and (2.19) of
Ref. [0] which are based on the wall shearing
stress alone. It is of importance to point to
purely numerical errors, Each calcuiation was
carried out with second-order (2.0) and fourth-
order (4.0) truncation errors and substantial
differences can be noted. The curve which ends
at measuring station 8 represents the prediction
of Ref. [17]. These values were obtained after
the iaw of the wail had been modified [17] and
adjusted to three-dimensional flows.

In the iower part of Fig. 12 the predictions
obtained with the closure assumption (2. 21) are
replotted for the second- and fourth-order soiu-

tion. The solid line gives the shearing stress for the case when equation (2. 21) is based on a displacement
thickness evaluated for both veiocity components. The dashed line gives the skin-friction coefficient for
a displacement thickness based on the u-component of the veiocity alone. Aithough there is agreement
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RANGE OF
PREDICTIONS
A2 -
EXPERIMENTS OF REF16
50 / % iﬁ
Re=3110°
40 — //
o
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~ ‘ £Q.221.40
60 N ,/ £Q.218,20
EQ.218,40.
50
L~ s
40
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STATION

Fig. 13

Calculated and measured

(Ref. [16]) fiow deflection.
Predictions with second- and
fourth-order accuracy of Ref, [ IO].

to investigate the closure
assumptions for three-dimensional
flows anew and construct more
adequate formulations for the outer
part of the boundary iayer.

It is seen in Fig. 14 that mo-
mentum transport Is too iarge in
the direction normai to the wali.
This is particularly true for the
u-component. It is known from ex-
perimental investigations that the
locai shearing stress is not co-
linear with the velocity vector;
this indicates that the eddy visco-
sity depends on ali three coordi-
nates. Near separation, variation
of the pressure In the direction
normai to the wall Influences the
variation of the shearing-stress
markediy, such that it cannot at
the present time be decided, which
of the two effects Is the dominant
one. Investigations are under way
at the Aerodynamische Institut in
order to determine extermentally
shearing-stress distributions in
three-dimensional boundary iayers.

Further investigations are necessa-

ry to explain the deviations between
second- and fourth-order solutions.

with the experimentai data for the second-order
soiution, there is no justification of adopting the
displacement thickness of the u-component for three-
dimensional flows.

The flow defiection as measured in the experi-
ment of Ref. [16] and caiculated in the solution of
Ref. [IO] is shown in Fig. 13. Again the assumption
of colinearity between locai shearing stress and
the projection of the velocity vector is found to be
invalid near separation.

A comparison of caicuiated and measured velo-
city profiles is given in Fig. 14. For the measuring
station 4 all six predictions fali almost together and
are in agreement with the experiment. [t is seen that
the difference between second- and fourth-order
solution is more pronounced In the shearing stress
than in the veiocity profiles. Near separation the
predicted exchange of momentum is seen to be too
large for the x-direction. This is aiso indicated In
Fig. 15 where for the two measuring stations the
effective viscosities are plotted versus the coordi-
nate normal to the wall. Large differences can be
noted in the outer portion of the boundary layer. Yet.
despite the large deviations of equation (2. 21) from
(2. 18) and (2. 19) of Ref. [10] the corresponding
differences in the veiocity profiles are small. For
more accurate predictions it is therefore necessary

60 Y
7 o Re 231.10° b r
50 | 2. Zu
o EXPERIMENTS OF REF.16
X
STATION 4 STATION?7
40 i —
v-PROFILE o u-PROFILE o v-PROFILE ¢ u-PROFILE »
30
q L]
20
q o
10 0]
o
0 J._‘A __’/ _‘.—0} e
0 v 04 04 wu 04 v 08 04 u 08
Fig. 14 Measured and calculated velocity profiles,

Measurements are of Ref, [13].

4, TANGENTIAL SLOT INJECTION AT HYPERSONIC SPEEDS

Tangential siot injection is of importance for surface cooling and external combustion processes,
It has been shown recentiy, that the cooling effectiveness is large enough for practical application.

Theoretical and experimental investigation of injection of foreign gases as He or H

has shown that

simpiification of the description of the diffusion process is not possible [IB]. This resuit was obtalned
by comparison of a finite-difference soiution of Ref. [19] with concentration measurements., The follow-
ing resuits of Ref, [19] demonstrate the application of the method for various fiow conditions, Fig. 16
shows the calculated concentration decay for laminar and turbulent chmically frozen and approximated
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50 chemlcal equilibrium conditions (flame sheet
STATION 4 STATION 7 approximation). It is seen that the decay is
rapid, although the turbulent decay is much
’ steeper. Fig. 17 shows the calculated shearing
\ stress distribution at the wall for the conditions
40 — \ of Fig. 16. A minimum can be noticed immediately
downstream from the slot. While these calcula-
tions were carried out for zero-pressure-
gradient-conditions, Fig. 18 shows the influence
Re=3110¢ of positiv and negativ pressure gradients in
30 laminar frozen flow. Separation is obtained in
the vicinity of the slot, while in turbulent flows
|~ separation cannot be observed. There is a
-£Q0.218.20 noticeable influence on the wall temperature and
_4~EQ0. 218,40 ‘/ 1 on the length of the flame due to non-vanishing
20 —£Q.219.20 1 __—1 pressure gradients. This can be seen In Figs.
-EQ 218,40 "/ 19 and 20, In the former the wall temperature
L -EQ. 221,20 is plotted versus the downstream coordinate
/,/EO 221,40 while the extension of the flame sheet is shown
‘ / in Fig. 20. According to these results positiv
10 = R // pressure gradients yield shorter and accelerating
v flows longer flames In comparison to zero-
pressure-gradient flows,
The calculations of the results reported
here are complicated mainly by three factors,
0 N Firstly for laminar frozen flows all diffusion
0 200 0 200 400 fluxes due to concentration .gr‘adlems mu.s! be
Heft. taken into account, Comparison calculation of
Ref, [IB] have shown that assumptions of constant
Fig. 15 Evaluation of closure assumptions for Prandtl-;, Lewis- or Schmidt number l|ead to large
the velocity profiles shown in Fig. 14 deviations in the concentration proflles, For
example, the Prandtl-number of the gas mixture
was shown to vary between 0, 4 and
0. 8 for free-stream Mach-numbers 0 38,68 77.36 116,04 15473 xs/h 19341
of M= 8. Constant Prandtl-numbers 10 N T I s
are often justified in homogeneous i \’\, turbulent ﬂ/=0 Rey/L=610'm
flows. This is because the tempera- Yol k | 9l M,=8
ture dependence of the dynamic vis- T \ % =0 T =21665K
cosity, the thermal conductlvity and L \\ \ * Poo =0.2263 b
the specific heat at constant pressure 05—\ . -'I e ——_ — T y
are nearly compensated in the Prandt!- \ 9 |—— Flame -Sheet-Approx
number. But the dependence of the b\ \\('jlommar
latter on the concentration is not \\ \‘F\\‘\§ L—-—-chemfro[zen
negligible, resulting In varlations of R . — et LT
more than 50 per-cen‘t which In turn 0 001 002 003 004 x/L 005
may be responslble in marked changes
in the concentration profiles, It is Fig. 16 Concentration decay at the wall for H2-Injection for
also noteworthy that in the descrip- laminar and turbulent flows
tion of the transport coefficients from
the Chapman-Enskog-theory the
billard ball model is not sufficiently o 72.36 154.73 23209 30945 xs/h 38681
accurate to determine viscosity and 2 Re/L-6 107”;-r I
thermal conductivity. The Lennard- My=8 |
Jones (6, 12)-potential or even more T T =21665K |
generalized (n, m)-potentials have Pop 202263 —m——=T == T m T —— lt——- ————— 1
to be incorporated in the integration Py A& N | _*g -
proceaure, /7
/ "———— chem. frozen
The second difficulty is intro- ,/»A.\’UfDU’e"f chem.equilibrium
duced by the flame sheet approxima- ;] / ‘ (FIame-Sheel-Appron/’/
tion. As the integration of the gover- g ’/ / ‘—”—_:—:1:__/____,:1 ]
ning equations for Hy-Air mixtures / il /.0
for the complete reaction mechanism /’ leminar gy w
requires large computation times the / 5% =0
flame sheet approximation often finds e ———— . 2 2 2 2
application In fluid mechanical pro- 0 T
blems. In the present problem the 0 002 0.04 006 008 x/L o1

flame sheet separates two adjacent
regions in the flow, in which con-
vection and diffusion effects alone

Fig. 17

Shearlng-stress distribution at the wall for laminar
and turbulent flows
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0 001 002 003 004 x/L 005

Fig. 18 Shearing-stress distribution for positiv and negativ
pressure gradients in laminar flows

are present, The only reaction pro-
duct HZO is generated along the
common boundary and in the region
close to the wall the molecular Og-
concentration vanishes and in the
outer region the Hp-concentration,
The flame sheet assumption necessi-~
tates the integration of a three-point
initial-boundary value problem, in
which the location of the internal
boundary must be determined. The
diffusion fluxes which are discon-
tinous across the flame sheet yield
the necessary compatibility condition
to ensure continuous concentration
profiles.

The third complication is en-

0 77.36 75"7:?955\\23\2'09 30945 x/h 386,81 countered in turbulent flows. Even
35 o B first-order closure requires very
/L2 6:00 0 e small step sizes, not oniy because
;. % of large velocity gradients near the
re/ e
0 77.36 154,73 23209 x/h 30945
25| 50 T ;
Ren/L=610"m"
% -5 Mg =8
] ~ S Too =216.65K
b o e ] - o @ "
e \‘\' ‘\\pw =02263 b
15 ap 2.3 / A
ax o\ a1 .
T =216.65K o \\ a,yL-O
P =0.2263b ——N0 turbulent 20 ) \
e ——=z+57" \
1 dx | !
05 0 : L
0 002 004 006 008 x/L 01 0 002 0,04 006 xs/L 008
Fig. 19 Wall temperature distribution in turbulent Fig. 20 Influence of pressure gradient

flows for positiv and negativ pressure-

distributions

on the extent of the flame sheet
in turbulent flow

wall but also because of the temperature peak in the outer portion of the boundary layer. Telescoping of
the grid in the direction normal to the wall does not serve a useful purpose as the maximum value of the
static temperature does not occur at the same location where the cross-correlations attain their.maximum.
Further details of the integration procedure developed for this problem may be found in Ref. [!9].

00 3868 x/h 7736 0 3868 x/h 7736 0 3868 x/h
2 { /7 ] /’ I ,1
Reg/L:610°m"  / Reg/L=4510m" ! Re /L=310'm" //
Te [ 7
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L0 285K ] chem frozen
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Fig. 21 Comparison of shearing-stress distribution in the

vicinity of the slot for different free-stream Mach-
numbers, For chemically frozen flows the maximum
is reached further downstream.

A large influence on the flow

7736 characteristics is exerted by the

free-stream Mach number. This is
particularly true for the shearing
stress and the lines of constant
temperature. In Fig. 21 the shearing
stress is shown for free-stream Mach
numbers 8, 6, and 4, It is seen that
the minimum downstream from the
slot is shifted to larger x-values

and increases with decreasing Mach
numbers, For turbulent flows the
isotherms of the flows with free-
stream Mach numbers as stated above
are given in Fig. 22. At My = 4 the
flame sheets extends further out into
the stream and causes higher tempe-
ratures in the outer portion of the
boundary layer than at Mg, = 8,
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Fig. 22 Lines of constant temperature for chemicai equilibrium.
Other conditions are the same es in Fig., 21

5. REMARKS ON NUMERICAL SOLUTIONS FOR BIO-FLUIDMECHANICAL PROBLEMS

The implantation of artificial heart valves has almost become a routine operation. Yet heart valves
still pose a number of flow problems which are not completely understood, This is not surprising since
the flow is extremely compiex as it is not only three-dimensional but also unsteady. In particular it is
the siow separated flow downstream from the valve which tends to trap various particles of the blood,
thereby enhancling the danger of making the recircuiating fiow thrombogenic. In addition, artificial heart
valves are definitely hemolytic and thrombus formation may be caused by the destruction of red blood celis
due to high shearing stresses in the flow, It is therefore important to know the detaiied structure of the
blood fiow through artificial valves, So far most investigations have been carried out experimentaliy
using flow visuaiisation techniques and pressure measurements, as for example Naumann's measurements
of the pressure drop in heart vaives [20].

An example of vortex formation and recirculating flow behind an open disc-shaped valve is shown in
the lower left part of Fig. 23. The experiment was carried out in the water tank of the Aerodynamisches
Institut at Reynoids numbers of about 200,
The picture in the upper left part of Fig, 21
was obtained through a microscope using a
tunnei of 0.3 mm width and a height of
0. 16 mm with a new technique deviced by
J. Lambert [21]. The fiow medium is a
mixture of ox-blood and a NaCl solution.
The dark spots on the downstream side of
the disc indicate the high concentration of
red blood ceils whiie the bright spots ex-
hibit much lower concentrations,

The first numerical anaiysis of this
problem was carrled out by Mueller and
Underwood (Refs. [22], [23], [24]).
Integrating the Navier-Stokes equations
numericaliy they obtained the flow pattern
shown in the upper right part of Fig. 23.
Direct comparison to the flow picture in

the iower left part is not possible as the Fig. 23 Flow pattern in idealised heart valve.
calculation is carried out for steady and Computed lines of constant stream function and
axisymmetric flow condition with a Rey- shearing stress distribution were provided by
noids number of about 200, Although the T.Jd. Mueller,

accuracy of the calculation is not fuily

explored, shearing stress distributions in the flow can be obtained from the integration. In the jower right
part of Fig. 23 lines of constant shearing stress are indicated which at the present time cannot be deter-
mined experimentally. It can be expected that with improved accuracy of future calculations our understan-
ding of the flow behaviour in the recirculating region can be much enhanced.

6. CONCLUSIONS

The development of the digitai computer has enabied the soiution of complex fiow problems. Severai
examples were shown to demonstrate the applicability of numerical soiutions, These include three-dimen-
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sional supersonic-inviscid flow fields about spheres at transonic free-stream Mach numbers. Two-
dimensional laminar incompressible boundary layers can be predicted to any degree of accuracy. The
same is true for three-dimensional laminar boundary layers, except that the behaviour of the flow near
separation is not fully understood. With the existing modeis for the Reynolds stresses turbulent flows
can also be determined with reasonable accuracy. For small Reynolds numbers separated flows, velo-
city and pressure distribution have been obtained from numerical solutions of the Navier-Stokes equa-
tions. Although laminar and turbulent flows can be simulated little is known about transitional flows
and transition or relaminarisation cannot be predicted.
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NUMERICAL TECHNIQUES FOR THE SOLUTION OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
AND IMPLEMENTATION OF TURBULENCE MODELS

Barrett S. Baldwin,* Robert W. MacCormack, and George S. Deiwert*
Ames Research Center, NASA, Moffett Field, Calif. 94035, USA

SUMMARY

The time-splitting explicit numerical method of MacCormack is applied to separated turbulent
boundary layer flow problems. Modifications of this basic method are developed to counter difficulties
associated with complicated geometry and severe numerical resolution requirements of turbulence model
equatians. The accuracy of solutions is investigated by comparison with exact solutions for several simple
cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solu-
tions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate
are obtained. A simple mixing Tength model of turbulence is used for the transonic flow past an airfoil.
A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the
simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained
based on a two-equation differential model of turbulence.

INTRODUCTION

With continuing advances in both computer technology and computational methods, the fluid dynamicist
has been able to solve increasingly complex flow problems. Flows governed by the unsteady "compressible
Navier-Stokes equations" provide an example. In the recent past (refs. 1 and 2), with computers such as
the IBM 360/67 and CDC 6600, we were able to predict two-dimensional shock-separated laminar boundary layer
flows at Reynolds numbers of 105. Today, with the CDC 7600, STAR, and Burroughs' I1liac IV computers, and
with recent advances in turbulence modeling, we are on the threshold of extending our calculations to
full-scale-flight Reynolds numbers.

The field of turbulence modeling has received an impetus from increasing computer capabilities. Even
if the quest for a universal turbulence model (refs. 3-5) eventually proves to be illusory, models tailored
to particular flows will undoubtedly continue to be important in engineering applications. The degree of
complexity that can be tolerated is increasing with the gains in computer speed and capacity. Three-
dimensional time-dependent solutions of the conservation relations, with enough resolution to compute the
important turbulent eddies (ref. 6), may become commonplace in the future. Turbulence modeling will still
be needed for the subgrid scales and near walls. There is a need for more experiments to test the adequacy
of the turbulence models that are evolving. Development of new experimental technigues such as the laser
doppler velocimeter (ref. 7) are making essentially disturbance-free measurements possible. Numerical
solutions of the type described here can aid in the design and interpretation of the experiments.

This paper presents results from several investigations that have been previously published
(refs. 8-11). The turbulence model equations pose a more severe numerical resolution requirement than the
Navier-Stokes equations. To counter this difficulty, a procedure that utilizes flux correction factors to
improve the accuracy of the numerical solution was developed. In the first part of this paper, the ideas
leading to that concept are described and simple examples demonstrating the principle are presented.

Only modest progress was made toward the basic goal of testing the adequacy of turbulence models.
However, knowledge was gained that should be useful in the design of future experiments and to improve the
efficiency of later calculations. It was found that the viscous sublayer of a turbulent boundary layer
near a separation point is insensitive to the use of the boundary layer approximation, although this
approximation may be invalid for the entire boundary layer, depending on pressure gradients.

Most of the effort in these investigations has gone into development of machine codes that can gen-
erate solutions of the time-averaged conservation relations coupled to turbulence model equations.
Numerical solutions of transonic separated flows over a thick airfoil are presented. These solutions are
designed to provide insight into the Reynolds-number dependence of such flows. Numerical solutions of
shock-separated hypersonic turbulent boundary layer flows, based on either a simple mixing-length model or
a two-equation differential model of turbulence, were obtained. An extreme case (high Mach number and
strong shock wave) was chosen in the hope that techniques would be developed capable of treating the range
of conditions at which experimental data will become available.

NUMERICAL METHODS

Preliminary Considerations

The two-dimensional mean-flow equations and turbulence model equations to be considered in this paper
can be written as

aU . aF . 3G _
A T T2 £, (1)

where U 1s a column vector of conserved quantities per unit volume (mass, momentum, energy, turbulent
energy, etc.). The fluxes F and G are column vectors that contain convection and diffusion terms. The
components of the source vector E associated with the mean-flow equations are zero. However, nonzero
source terms appear in the turbulence model equations; for example, those representing production and
dissipation of turbulent energy. The fluxes and sources are functions of auxiliary variables such as the
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x component of velocity u and the first derivatives of these variables. The auxiliary variables are
algebraic functions of the conserved quantities. The specific relationships implied in these statements
are listed in later sections. The quantities appearing explicitly in equation (1), or linear combinations
of them, are often smoothly varying compared to the auxiliary variables, a fact which has not been fully
exploited in numerical solutions. Knowledge of the behavior of the fluxes and sources from a numerical
solution can sometimes be used to tailor the numerical procedure to obtain a more accurate solution. In
some cases, it can be shown that use of exact values of the fluxes can produce exact numerical solutions.

Basic Numerical Method

To accomplish the goal of computing shock separated turbulent flows, a numerical method is needed
that can treat shock waves in the inviscid regions and also treat the compressible viscous flow equations.
MacCormack's (ref. 12) explicit two-step second-order method (a Lax-Wendroff variant) has been widely
used and has been found to perform reliably in the computation of a variety of inviscid and viscous flows.

The two-dimensional time-dependent calculations in this paper are based on MacCormack's (ref. 1)
time-splitting method for solution of the Navier-Stokes equations. The conserved quantity U 1in equa-
tion (1) is advanced by a time step a4ty as though the 3G/ay and E terms were absent, and then by a
time step oty in which 3F/3ax is omitted. The source term, when it is present, is included with 3G/ay
because a sensitive balance develops between E and 3G/3y in the solution of turbulence model equations.
The finite-difference operation utilizes a predictor and corrector sequence. The predictor step in the
advancement Aty can be denoted by

- at
Uyt * 0t t)) = Uislt,0 £) - o [Fgi(t ty) - Fyop 5(t, ty)] (2)

and the corrector by

oty .
Uyt raty, ty) = {Uij(tx’ t,) + U jltxtaty, ty) - —f [Fie, 5(tx *otgs ty) - F L3t t oty ty)]] s
3

The bar on F indicates that predicted quantities U are to be used in the evaluation of fluxes. The
elements of F represent fluxes (or stresses) that are evaluated in such a manner as to achieve second-
order accuracy after the predictor-corrector sequence is compieted. For example, at the cell surface
lying midway between mesh points 1 and i+1, the flux value u 1is evaluated as uj in the predictor
and as uj4, in the corrector. The stress derivative of u is evaluated as (uj4, - uj)/ax in both pre-
dictor and corrector. The corresponding relations for the advancement oty are

at
U = - X -
Ujj(tes B, + o)) = U5l t) - 55 [G‘.j(t"' ty) = 6y gty )1+ ot Ey(t,, t) (4)
and
Ugj(tee t, + ot = ! it ty) + u jltgr ty * 8t - [G galte by F ot ) - Gy (.t +at )]
+ AtyEij(tx. ty + Aty) . (5)

The source terms E, when present, are evaluated at the center of the cell being advanced in both predic-
tor and corrector.

Let L (Atx) denote the pair of operations by which Ujj(tx + Atx, ty) is obtained from Uij(tx, ty)
and let L ) denote the analogous determination of Uy z% ) ty + Aty) from Uji(ty, ty). MacCormac{
(ref. 1) h %own that, although the sequence Ly(at)L %) is accurate only to first order in ax and
by, symmetrica] sequences such as (at/2)Lx(at)L (At/%) retain second-order accuracy. Computational
efficiency is enhanced by the use ofyoperator sequgnces of the form

L(at) = [Ly(%)LX(%)Ly(%ﬁ')]n ’

where n is an integer representing the number of operations LylLyLy that are to be applied in one time
step At. When mesh Reynolds numbers (puax/u) are greater than %, the maximum time step for which the
calculations will be stable is determined by the CFL (Courant-Friedrichs-Lewy) conditions (ref. 1)

2nA

y nax
(ke mas

and rﬁ+c)max .

at <

In regions of coarse mesh, n is set equal to 1 and large values of n (up to 100 in this paper) are used
in fine mesh regions. Most of the computing time is then spent in the finest mesh, which constitutes a
small fraction of the total number of computation points. Cumulative values of fluxes at the last cell
face between meshes are stored during operation in the fine mesh. These values are used to obtain average
fluxes to be applied during operation in the adjacent coarser mesh.

Inviscid Burgers Equation

For purposes of illustrating the use of knowledge of the solution to improve the accuracy of the
finite-difference procedure, numerical solutions of the equation
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a‘f*’a?(iuz) L (6)

have been obtained. Kutler (ref. 13) has investigated the ability of several differencing techniques to
capture the propagating discontinuity that results from the initial conditions

u(o,x) = 1.0 - SF(x - xl) (7)
and the boundary conditions
u(t,0) = 1.0, (8)
ult,x,) =0 . (9)
The function Sp(x - x,) is the unit step function
0, for x < X,
SF(x = gl ¥ . (10)
1, for X, < X

The exact solution of equations (6)-(9) is

u(t,x) =1 - SF(} - %-t) . (1)

Kutler found that MacCormack's method accurately predicts the position of the discontinuity as a function
of time, but smears it over several mesh points. The smearing was greatly reduced with CFL numbers

(CFL = umaxAt/ax) near 1.0. Since CFL numbers well below:1.0 are used in this paper, it is of interest to
note the performance of MacCormack's method in such cases.

The differencing used in this paper corresponds to evaluation of the flux at cell faces between the
mesh points. Evaluation of F according to the relations

o lw 5
F1+(1/2) =zui?, for predictor, (12)

and

?1+(1/2) = % uf,, » for corrector, (13)

leads to second-order accuracy, since, after the predictor and corrector steps are completed, the effect
is approximately equivalent to averaging the fluxes at i and i+1 to obtain the value at 1i+(1/2). For
solution of equation (6) a uniform mesh with Ax = 0.1 was used.

Figure 1 shows a comparison with the exact solution of numerical results obtained at a CFL number
equal to 0.1. At t = 10, the solution has settled essentially into the cyclic behavior shown, which
repeats itself as the wave front progresses past each mesh point. The position of the wave front, which
can be deduced from the numerical solution, remains accurate.

If the exact fluxes at the cell faces between computation points

Fistr/2) = %’ [1 J SF("1+(1/2) = %‘ t)]2 =’l‘ [] - sF("1+(1/2) - %’ t)] (14)

are used in both predictor and corrector, the numerical solution is exact except at the computation point
nearest the wave front. The value of u at that point increases from zero linearly with time so that the
position of the wave front between mesh points can be accurately inferred. The accuracy of the numerical
solution can be improved by any modification of the basic method that results in the use of accurate
values of the fluxes at the cell faces. For example, the flux can be computed in both predictor and cor-
rector according to the relation

% ui2 , if 1< (u1 + u1+1) < 1.9
F1+(1/2) - 1, (18)
7 Ujyy o if 0.1 < ("i + u1+l) <1

and can be computed according to the basic method from equations (12) and (13), if wuj + uj+; 1is in
neither of the above specified ranges. The results in figure 2 were computed by this means with a CFL
number equal to 0.1. Essentially the same accurate solution can also be obtained from the unmodified basic
method with a CFL number close to 1.0.

Linear Viscous Equation

A more useful modification of the basic method results from a study of the linear equation

3u 3 ul _
-a-f“‘a—x(CU'\J-a-)-(') 0. (]6)
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In complicated flow problems, time-dependent solutions are often used as a means of arriving at a final
steady-state solution that is of primary interest. The steady-state solution of equation (16) that is
approached as t » « is obtained by setting the flux equal to a constant

cu-v %%-- “1q - (17)
With the boundary conditions
u(t,0) = 0 (18)
and
u(t,1) =1, (19)
the steady-state solution is
u(e,x) = -‘1'_—‘2‘)(%((%/;"))— . (20)
With
¢ = -1 (21)
and
v = 0.05 , (22)

the solution resembles a viscous boundary layer.
For numerical solutions the initial conditions
0 , for x=0
u(o,x) = (23)
1.0, for x>0

are used. In the basic numerical method, the flux F = (cu - vau/ax) is evaluated at cell faces between
mesh points according to the relations

5 - Y41 = M) | for predict (24)
i+(1/2) = Sy * V\—5x ) » for predictor,
and )

= u - u

F'i+(1/2) : caiﬂ + "(_—w,y—i). for corrector, (25)

The same formula for the stress derivative is used in both predictor and corrector, since the finite
difference is properly centered about the cell face between mesh points, as required for second-order
accuracy.

It is instructive to estimate the truncation error of the numerical solution according to the modi-
fied equation approach developed by Warming and Hyett (ref. 14). With MacCormack's differencing technique,
the numerical solution of equation (16) would satisfy exactly the modified differential equation

u L 9 Sy U 4 € (a2 L o2p42) U = =
5 ik (cu v ax) + 3-(Ax c2at?) o + higher-order terms = 0 , (26)

which is obtained by Taylor series expansion of solutions of the finite-difference equation. Thus At and

Ax must be chosen such that the truncation error, the third term in equation (17), does not swamp the
viscous term that we intend to compute. The requirements for numerical stability are

ax 1 ax2?
At <—é-and o © (27)
It is apparent from equation (20) that, with c = -1 and v = 0.05, Ax < 0.1 is required for adequate
resolution of the boundary layer. In that case, the second condition in equation (27) is more restrictive
than the first, and At? << ax2. The requirement that the truncation error in equation (26) be small com-
pared to the viscous term is then

, 32u
ax2

[cax? 33| _.
176 3|
Evaluation of these derivatives from equation (20) leads to

2ay¢2
Gl A \?zx << 6 . (28)

Therefore the mesh Reynolds number |[c|ax/v must be small compared to /B.

A numerical solution of equation (16) has been obtained with the boundary conditions in equations (18)
and (19), constant values in equations (21) and (22), and initial conditions represented by equation (23).
A mesh spacing ax = 0.1 was used. In figure 3, the numerical solution is compared to the exact

A
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solution represented by equation (20). Since it is often expensive to refine the mesh in practical fluid-
flow problems, it is of interest to investigate the possibility of improving the accuracy of the numerical
solution by modifying the numerical method. If we are primarily interested in the final steady-state

solution, it is not necessary to impose accurate values of the fluxes at all states of the time-dependent
calculation. The steady-state solution is approximately

u-1=~- exp(— é) as t+=,

showing that the variation of u - 1 with x can be accurately represented by an exponential. In the
interval xj 2 X 2 Xj4+;, the exponential variation that passes through uj at xj and wuj4; at x4

can be written
- S | i+ "
u-1= (u - l)epr = )!tn(uu'i _— : (29)

Evaluation at a cell face halfway between mesh points yields

u'“'(l/Z) =] - /(Ui v 1)(1}.“_1 3 1) > (30)
and differentiation of equation (29) leads to
u -1 u -1
i _ (Yi+y2) ]zn( i+1 ) (31)
(ax)i+(1/2) [ 5 ug - 1
Accordingly, the flux F = cu - v(3u/ax) 1in equation (16) would be
. U ) ]
v i+l
Fieqrz) = © = oy = Dlugy, - 1) [C "X ""(ui_-]_)] : (32)

To use equation (32) in a machine code, it is necessary to avoid the singular behavior that occurs when

uj or uj;, approaches 1 too closely. This can be accomplished by replacing the 1's in equation (32)
with 1.01. Use of equation (32) in a numerical solution of equation (16) virtually reproduces the exact
steady-state solution, as shown in figure 4. This remains true even when the condition for small trunca-
tion error of the basic method, in equation (28), is violated. In addition, the skin friction

e
o i x+0

can still be computed accurately by evaluating the derivative from equation (29) at a point near x = 0.
Several additional steps can be taken to make the results of the foregoing study more general and more
useful. Knowledge of the exact solution was used in choosing the 1's for equations (29)-(31), but this

can be avoided. Without specifying the form of the flux F, which can be a nonlinear function of u and
3u/ax, suppose variations in the interval xj_, < x < xj+; are of the form

. =
u- A= (u- A)exp[(x Axx*) ln(“;:‘_ X )] . (33)

Evaluation at x = Xj., and rearrangement leads to

(Ug4yU5.y = 43%)

A= . (34)
Ujgy - 295 * Uy,
To avoid a zero in the denominator of this expression, the condition
lugey = 2ug + g | > eollugy, |+ lug)) (35)

is imposed with e, ~ 1073. Violation of this condition is an indication that the variation of u is
nearly linear and %he basic numerical method is adequate and needs no modification in the interval

Xj-y € X < Xj4,. However, 1f inequality (35) is satisfied, A can be computed from equation (34). To
avo*d singular behavior of the logarithm in equation (33), the condition

(ui+1 - A)(ui -A) > 502(“$+1 + uiz) (36)

js imposed. Violation of this condition is an indication that u 1is nearly constant in the interval

Xj < X < X+, and again the basic numerical method would generate accurate values of fluxes at the cell
face between x; and xj4). However, if inequality (36) is satisfied, no singular behavior will occur in
the computation of the relations

Uis(r/z) = A+ sanluy = AVTug,, - ANy - A) (37)
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and

[u - Al fu;,. -A
3u) - j+(1/2) i+1
(ax)i+(1/2) AX 2n( uj - A ) : (38)

Expansion of uj and uj4, about (uj4; *+ uj)/2 in these relations shows that they differ from the basic
method in equations (21’ and (25) by {erms of the order (uj4; - uj)2. Numerical solutions from the basic
method are accurate to the second order in 4Ax, and are exact if the variations are polynomials of the
second degree or less. Numerical solutions based on equations (37) and (38) are also accurate to the
second order in Ax and are exact if the variations are exponential. When the variations are not expo-
nential, the latter method produces an effect akin to a transformation in which the logarithms are com-
puted rather than the original variables. It is shown in a later section that this feature is useful for
the numerical solution of turbulence model equations in boundary layers where the turbulence quantities
vary through many orders of magnitude.

For more complicated flow problems, nonuniform meshes are essential to minimize both the required
storage space and the computation time. When the mesh spacing is not uniform, a procedure different from
the foregoing is needed, as follows: If variations are of the form

u - A = B exp(agx) (39)

in the interval xj_; < X < Xj4;» it follows that

Ujy; ~A=B exp(u0x1+l) s (40a)
uj - A =B exp(agx;) , (40b)
uj_, - A =B explagx;_,) - (40c)
Elimination of A 1leads to
(41a)

Ujgp - U5 = B[exp(aoxi+l) - exp(uoxi)]
and

Uy - Uy, C B[exp(uoxi) - exp(aoxi_))] . (41b)
The ratio of these relations can then be written

Uy, = Yy 1 - exp[ao(xi+1 - xi)]

oy, explag(x; - xi—l)]{l - explag(x; - x;_,1]

or
enfoitr Ui\ = 1 - explog(xgy, - x3)]
u, - u T - expla, (x; - x;_.}]
_ i i-1 0\ "1 i-1
% ~ X; - X (42)
i i-1
The inequalities
Iu'l - ui-]' z co(luiﬂl it lui| + lui-ll) (43)
and
(ugay = updluy - ug_ ) > e2(ufy, +ug? +uf ) (44a)

are imposed to avoid singular behavior (eq ~ 1073). If these inequalities are not satisfied, the varia-
tions are linear or not monotonic and the basic numerical method ?see section on basic numerical method)
should be used. However, if inequalities (43) and (44a) are satisfied, ag can be computed (by iteration)
from equation (42), with the added restriction

I“ol(xi - xi_l) Seg s (44b)

which is also needed to avoid singular behavior in evaluation of the right side of equation (42). If the
equality in equation (44b) is the only solution allowed by this restriction, use of that value will produce
an effect in the following formulas (equations (45)-(49)) that is equivalent to the basic method. Once a
value of ay has been arrived at that satisfies inequality (44b), B can be computed using equation (41b)
and A eva?uated from equation (40b). Then, according to equation (39), we obtain

Uis(172) A+ B exP[aoxH-(l/z)] (45)

A




and, by differentiation of equation (39), we have

(%%.1+(1/2) : u°[?1+(1/2) ) é] ’ (46)

With as much complication as is represented by the use of equations (42)-(46), one might wonder whether
refining the mesh would entail less computer time in a compute-bound-flow problem. However, if the final
steady-state solution is of primary interest, it is not necessary to solve the foregoing equations at every
time step. Instead, correction factors for Uj+(1/ (au/ax)1+$1/2) can be evaluated periodically and used
to correct the fluxes computed according to the bas?g method, from equations (24) and (25), at intervening
time steps. The correction factors are

u
= —iiillzl , predictor,

CUate(1/2) T g (47)
u

p 1+(1/2)

CU.i+(1/z) = TP corrector, (48)

- u
(x1+1 xi)(ax)1+(l/2)

CDU,1+(1/2) = (u1*1 - , predictor and corrector, (49)

with ujs(;7,)and (au/ax)i+(1/2) evaluated according to equations (40)-(46) and uj, u +;_ Obtained from
the numerlcai solution at the same timestep. The initial values and default values —-}a11ure of inequali-
ties or zero denominators in equations (47)-(49) — of the correction factors are 1.0.

Application of the flux correction factors in the problem presently under discussion consists of
replacing equations (24) and (25) with the respective relations

F 3 PR 5 Wl | P8
i+(1/2) = Y%, i+072) PN\ & DU, i+(1/2)

and _
u - u
2 - = by i

Fie(i72) = Y4100, 54(172) * “<—Ax )CDU,1+(1/2)

Numerical solution of equation (16) with correction factors computed every tenth timestep produced the
same accurate steady-state solution obtained by the earlier modification of the basic method but without
significant increase in computer time relative to the basic method.

It is important to note that flux correction factors resulting from any other procedure based on the
properties of the numerical solution could be used similarly to improve the accuracy of the steady-state
solution. For example, correction factors from higher-order methods that are evaluated infrequently
rather than at every timestep may enhance the efficiency of a machine code to be used in a compute-bound-
flow problem. Alternatively, a refined mesh could be used infrequently in critical regions to evaluate
flux correction factors that would produce accurate steady-state solutions on a coarser mesh.

Simplified Turbulence Model Equations

In the viscous sublayer of a turbulent boundary layer, quantities for which differential equations are
provided by turbulence models vary through several orders of magnitude, thereby posing a severe numerical
resolution requirement. Complete turbulence model equations are listed in a later section of this paper.
It is instructive to investigate the properties of a simplified version of the Saffman-Wilcox (ref. 5)
turbulence model represented by the relations

3t . 3 (L 3%\ - _pq,3/2
37 T an an) 20%/ (50)
3e Je
s, 2 s\ .
3t * 3n(- 3n) 10/ eS (51)

The quantity ¢ represents the square of pseudovorticity (or rate of dissipation) normalized with respect
to the value at the wall. The quantity eg represents the turbulent energy per unit mass of fluid. The
time 1 and distance from the wall n have been normalized in a way that simplifies the constant coeffi-
cients. In the section on turbulence models, equations (50) and (51) are shown to be applicable in a
portion of the viscous sublayer where the eddy viscosity is small compared to the molecular viscosity and
the gas density and temperature are approximately constant.

With the boundary conditions

t(t,0) =1, (52)
e (t,0) =0, (53)
clton))) = gy » (54)
eg(t.n,) = e, (85)
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the exact steady-state solution is

t(=sn) = (g73/% - 0+ n)7 (56)
and
( (g1 - nyy + "= (51174 - ny) # n)(1-m .
e.(x,n) = e 3
o ol - e
where
m= g (1 + /AT). (58)
For simplicity, &1, and esll have been chosen to be
&y, = (1 #0007 (59)
and
e =1, 60
S), (60)
so that equation (56) becomes
¢(=sn) = (1 + )™ (61)
and equation (57) becomes
m -m
eg(=,n) = (A to)”- (V¥ (62)

(1 # 0y )"= (1 40y )(0mm)

Suitable initial conditions for time dependent numerical solution of equations (50) and (51), respectively,

are
1 5 for n=20
¢(0,n) = (63)
(1 +n,,)7" for n>0

and
0, for n=0
es(om) = . (64)
1, for n>0
The variable n 1in equations (50) and (51) is a dimensionless version of the y coordinate. For
numerical solution of these equations by the basic method (see section on basic numerical method), the

fluxes G 1in equation (1) are evaluated at the cell face between uniformly spaced mesh points according
to the relations

('.,.l )

80,34 1/2) ™ (%ﬁ)j+(l 1) e (65)
and
e e -e
Ges,j+(1/2) = 3_:).1+(1/z) = _51%1 i (66)
and the source terms E are evaluated at the cell centers
g = - 20052 (67)
and
Bes,j =~ 10/23 ey - (68)

Equations (65)-(68) apply to the predictor. In the present case, the formulas for the corrector are
identical with unbarred quantities replaced by their counterparts containing bar overscripts. In figure 5,
a comparison is shown between the resulting steady-state numerical solution according to the basic method
and the exact solution. The ratio eg/vz 1is proportional to the eddy viscosity. A comparison of this
quantity with the exact values is also shown in figure 5.

In an effort to improve the accuracy of the solution without refining the mesh, the modification of
the basic method described in the previous section can be used to compute the fluxes. In addition, it is
necessary to compute the source terms on the right sides of equations (50) and (51) more accurately. For
this purpose, the source term in equation (50), for example, can be expressed as a flux in the form




20.3/2 = 3 | . 3/2
203/ 3nf 20¢3/2 dn .
The appropriate finite difference expression of this relationship is

j+(1/2)
E . = j%- - 20¢3/2 dn . (69)

TsJd
"j-(1/2)

For the purpose of demonstrating the usefulness of flux- and source-correction factors, such factors
are first derived from the exact solution for <z, as was done in the section on the inviscid Burgers
equation. The exact solution for ¢ 1in equation (61) can be used in equation (69) to compute a source-
term correction factor to be applied in the finite-difference solution, namely,

"j+(1/2)
C3/2dn
nj-(1/2) U "j)“' 1 1 }
C = = - - (70)
ks 9
- g S (SRS L UL Yt

Also from the exact solution of equation (61), the flux correction factor is

g 4%q47 1 ’ )
[V n54(172)] [?1 o)t m (T nj+,i;]

If the basic numerical method represented by equations (65) and (67) is modified according to the
relations

Coc,i+(1/2) *

Co. (c.. -c.)
. Gg,j+(1/2) 41 T &4
G;.:I+(1/2) An (72)
and
E(hj N CEC)J(-zocj/z) ’ (73)

the resulting steady-state numerical solution is exact except for roundoff errors. Thus, if flux and
source correction factors can be found by means other than through a thorough knowledge of the exact solu-
tion, the accuracy of the numerical solution can be improved without refining the mesh. One way to accom-
plish this is by assuming that the variations are exponential, as in the previous section. This leads to
correction factors that will produce an effect roughly equivalent to a transformation in which differential
equations for the logarithms of the variables are solved numerically rather than solving the original equa-
tions, although no such transformation is actually carried out. If the mesh is uniform, the procedure for
the flux correction factor is given by equations (34)-(38) and (47)-(49). For a nonuniform mesh, equa-
tions (40)-(46) replace (34)-(38). It should be reemphasized that it is not necessary to compute the flux
correction factors at every timestep if only the steady-state solution is of interest.

The source correction factor corresponding to exponential variations requires further development.
If the variation of E 1is of the form

E=A+B exp(agn) (74)
in the interval N§-(1/2) ¥ "2 Nje(1/2)° it follows, by integration, that
j+(1/2)
B
(R [“j+(1/z) " - (1/:)] [*”‘P[“ “J+(1/2)] ) e""[" "j- (x/z)]}
"3-(1/2)
and the source correction factor becomes
I N B{e"p[O“J'r(I/Z)] exp[" nj- (1/2)]] (75)
E.j %["+(1/2) ~ "3-(1/2)]%;3

with the constants og, B, A determined in terms of E j+1s Ea j=1 by the procedure represented by
equations (40)-(44). If the mesh is uniform, A is determine by equations (34)-(36) and

a. = , for uniform mesh, (76)

and

E; - A

B = EY#%E;E}T » for uniform mesh. (1
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The initial value and default value of cEj is 1.0. Application of the correction factors is the same as
in equations (72) and (73).

In figure 6, results from a numerical solution obtained, according to equations (49) and (75), by
computing flux- and source-correction factors every tenth timestep are compared with the exact solution.
It is apparent that this modification greatly improves the accuracy of the solution in comparison with
results from the basic numerical method (fig. 5), even though the variations with n are not exponential.
Such gains in accuracy are to be expected when there are large variations of dependent variables between
mesh points that are not well represented by second-degree polynomials.

COMPRESSIBLE MEAN-FLOW EQUATIONS

Basis of Equations

Time-dependent solutions of the conservation relations for viscous compressible flows that are
coupled to turbulence model equations are presented in a later section. Turbulence effects in compressible
flows are incorporated by means of the "time averaged" viscous flow equations cast in terms of “mass
averaged" variables. The effects of turbulence on the flow are expressed in terms of a scalar eddy-
viscosity coefficient. A useful derivation of the mean equations of motion and the Reynolds stress equa-
tions in terms of mass-averaged variables has been given by Rubesin and Rose (ref. 15). A proliferation
of explicit mean-product fluctuation terms arising from compressibility is avoided by this technique. The
resulting mean-flow equations are formally the same as their laminar flow counterparts, except for the
addition of the Reynolds stress tensor and additional mean-dissipation terms. The mass-averaged Reynolds
stress equations correspond, term by term, to the constant property equation of Rotta (ref. 16) and the
turbulence kinetic energy equation is consistent with Rotta's and Townsend's (ref. 17) constant property
equations. Consequently, turbulence models that have evolved from Reynolds stress equations for incom-
pressible flows can be applied to compressible flows (albeit the constants may change due to
compressibility).

The turbulence models employed in this paper express the Reynolds stress tensor in terms of an eddy
viscosity e. A Reynolds analogy is used for the Reynolds heat flux and a laminar analogy for the mean-
dissipation tensor. Thus the vectors U, F, G, E 1in equation (1), which correspond to the mean-flow
equations, can be expressed in the form

2} pu pv
pu puu + ¢ puv + t 0
U= , F= 2 , G= , Xy , E= . (78)
pv pvu + Txy pv +0y 0
e (e + ox)u + Ty +q (e + oy)v + Ty + ay 0

The density p 1is a mean value and the velocities u, v are mass-averaged values. The bulk viscosity in
the viscous terms is taken to be zero. Thus the stresses are

o, =p+ % (v + c)(%% + %% -2(u + ¢) %%-* % e » (79)
= s U, AV
Tey = Tyx (p + e)(ay +t ) e (80)
oy o+ h )@ B2t v ) e e, (1)
and the heat-flux components are
q, = - + Y Ry
8 R PR} X
and
n c) ol (83)
o, = -{g-* p=)r 7 -
y R et/ ¥

The last term in equations (79) and (81) arises from the definition of static pressure as the mean of the
three normal stresses (including Reynolds stresses). The quantity es s the turbulent energy per unit
mass of fluid. The mass-averaged specific internal energy ej 1is related to the mean total energy per
unit volume e, as in laminar flow, by

_ u? + y2

ei'%'T_' (84)

quations of state relate the mean pressure p and temperature T to p and ej. The perfect gas
relations

p= (v - Toey (85)
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and
! (86)
T== 86
Cy
and the Sutherland viscosity relation
c,T3/2
u o= E;_I'T (87)

are valid approximations at the conditions of experiments referred to in this paper. In these relations
the ratio of specific beats y 1is equal to 1.4 and Cy is equal to 4290 ft 1b/slug °R (717.53 in MKS
units). The constant C, 1s 2.27x107% slug °R/ft sec (1.4582x10° MKS) and C, is 198.6 °R (110.333 MKS).

Differencing Method for Rectangular Mesh 1

As discussed in the section on numerical methods, the fluxes and stresses are evaluated at cell
faces between the computation points in such a manner as to achieve second-order accuracy after the
predictor-corrector sequence is concluded. It is sufficient to describe the technique for the Ly
operator, since the procedure is the same for the Ly operator with (x,y), (u,v), and (i,j) interchanged.
The Ly operator requires evaluation of the terms o¥ F in equation (78) at cell faces [i + (1/2)]
between computation points 1 and i+1, which are at the centers of the cells. Treatment of quantities
appearing in F that do not entail derivatives is exemplified by the notation

Py s for predictor

) i (88)
i+(1/2) Py4, » for corrector .

However, there is one exception to this rule. To avoid a nonlinear instability that arises when u
changes from negative to positive within a cell, the u that multipiies »p, pu, pv, and (e + oy) is modi-
fied according to the relation

Ua(r/z) = % (gay * Ugde IF (ugy, = ug) > 0 and (Bugy, - u)(3ug - ugy,) <0, (89)

in both predictor and corrector (ref. 1). The j subscript has been omitted in equations (88) and (89)
since the center of the cell face lies at the same value of y as the center of the cell in a rectangular
mesh. Also, for simplicity, the bar overscript representing predicted quantities is omitted here and in
subsequent relations.

Treatment of derivatives appearing in F is according to the notation

u LTI
(%%) - _iilzj_:_-ill-, for predictor and corrector , (90)
i+(1/2),3 i+ 7%
and
L ipr = Uz
_141il_:__l;1:l , for predictor
Yj+1 = Yja
a_u) | (91)
(ay 1*(1/2)vj
Yi4,94 7 Y, e , for corrector .
B L yj+l - yj-l

Integral Form For Nonorthogonal Mesh

When the boundaries of the flow field under investigation are not aligned with a rectangular mesh,
many computational problems are avoided by the use of a nonorthogonal mesh that does fit the boundaries.
In the absence of source terms, integration of equation (1) over a volume element converts equation (1)
into the following form:

—aanUdvolx* H-nds=0, (92)
vol S
where
4] 0q
puU - oug + 1 ¢ e
U= » H= ~ = Ax
vq + e
pv pvq T y
— - i -~
e eq+ 1+ q - kvT

The velocity vector q and stress tensor Tt can be expressed, respectively, as
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oy o
2 +
Uex Ve.y )

o4
1]

E"‘T EE + 1 E-é **
“x"x"x Xy xy yxyx y y y

~F
"
(133

where Ex, e, are unit vectors, n 1is a unit vector normal to the surface of the computation cell, and
Ogs T are defined in equations (79)-(81). These equations can be solved in the Cartesian x,y
coord?%ate system for an arbitrary quadrilateral volume element (sketch a).

ns=S

= fds fds+fds+fds+fds

S Sz S3 S4

5, i,x
Sketch a. Quadrilateral volume element.

According to MacCormack (ref. 18), equations (4) and (5) in the Ly operator are replaced by

. n¥(1/2
predictor: Ui,j

vty (s e S+ W g - 8)
(94)

) n+(1/2) . 1) n n+(1/2 _ +il72; - “n+(172j . -
corrector: Uy 3 ?{Ui.j * Uy voI1 P [Hi,J+l "5y * Hy g Sl]

where superscript n 1is a timestep index and Sl ..S, are area vectors for the volume element volj j,
and the L, operator becomes

.o _ nk(1/2) st an+(1/2) |5 gn+(1/2) ]
predictor: U",j Ui.j mj—j- [H1 i Sh + H1 -1,j 52
(95)
. o+l _ 1| n+(1/2) n+1 at  (in*r 5 mE 2
corrector: U,I )3 z‘li.li'j + Ui,J - V_‘ﬂﬁ (H1+1 Ji “ + H i,3 52)]

The solution can be advanced more frequently with smaller timesteps in regions of fine mesh as mentioned
in the discussion that follows equation (5). To evaluate the viscous derivatives for a nonorthogonal mesh,
the following transformation is appropriate:

- 2% 3% , 3¢ 3n = 3% 3§ , 9¢ 3n (96)
ax 3E 3X | 3n 3X ° ay 3t 3y | an 3y °

where ¢ 1is a dummy dependent variable and (£,n) are the local coordinates of the nonorthogonal mesh
(sketch b). The derivatives are differenced according to the relations

ag _ SogbY, - 86 0¥ 2 e

= S 3 = - - (97)
ax AxEAyn Aanyc ay AyCAxn AynAxc
where (for surfaces S, and S“)
B¢ = $ia1,35 ~ Himdi 0 %% T fingt T 1,4 (98)
BXe = Xia1,35 " Kimdi 0 M T Kit,g4 T M4m0 99)

We = Yie,gg " Yimgs 0 Va7 Yitgn T Vit vi%0)




2-13

Sketch b. Nonorthogonal mesh notation.

and

i for Lx i
im = s 11 = ¥ (101)
i-1 for Ly i+1 for Lx corrector

j-1 for Lx J
Jm = » 3 . (102)
j for Ly J+1 for Ly corrector

This treatment of the viscous derivatives always results in centered differences, maintains the second-
order accuracy obtained by symmetric ordering of the L, and Ly operators, and provides consistent treat-
ment of discontinuous boundary conditions (such as at tge lead¥ng and trailing edges of airfoils). The
algorithm represented by equation (89) is again necessary to avoid a nonlinear instability associated with
an expansion in which the velocity changes sign.

TURBULENCE MODELS
Mixing Length Model

A simple mixing-length model (ref. 3) was used by Deiwert (refs. 9, 11) to treat turbulence for the
calculation of separated flow over a thick airfoil. Detailed solutions are discussed in a later section.
Using this mixing-length model, the eddy viscosity e, in the neighborhood of the wall, is defined as

= pg2|2U 4 3V
e =2l 2y (103)

where

L= 0.4 y[l - exp(—y ‘/l%—g—;‘fTw/zs)] (104)

until the following value of ¢ 1is reached and subsequently used:
2 = 0.078
where & 1is determined by an arbitrary cutoff criterion based on the vorticity. For the wake region,

e = 0.001]7606|u6 _UQI 5 (105)

where ug and u, are the velocities at the edge of the wake and its centerline, respectively.

@

While ultimately it will be necessary to resort to more advanced turbulence models for separated
flows, the above model should provide some insight into the influence of Reynolds numbers on such flows,
as well as provide an instrument for the development of the requisite numerical methods.

Two-Equation Turbulence Model

Calculations have been carried out by Baldwin and MacCormack (ref. 8) for the shock-separated hyper-
sonic turbulent boundary layer based on either the simple mixing-length model or on the Saffman-Wilcox
(ref. 5) model. In the two-equation turbulence model, the eddy viscosity is assumed to be a function of
local properties of the turbulence. The properties selected are the specific turbulent energy e and
the pseudovorticity (or rate of dissipation) o, which satisfy equation (1) with
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The values of the constants o*, o, a*, a, 8*, 8, £ are 0.5, 0.5, 0.3, 0.2638, 0.09, 0.18, and 2.5,
respectively. The eddy viscosity ¢ appearing in the above relations, as well as in the mean-flow
equations, is given by

e

o) (108)

Saffman (ref. 19), Wilcox and Alber (ref. 20), and other authors have demonstrated a wide range of
applicability of the above model for incompressible and compressible flows. More recently, Saffman and
Wilcox (ref. 5) have shown that the model provides reasonable predictions of viscous sublayers in turbu-
lent boundary layers and reproduces the law of the wall, which has been observed experimentally. For this
application, the appropriate boundary conditions with a wall at y = 0 are

() =0 (109)

()= “’"‘T’:"w s(zO ;"’o"‘) (110)

where the subscript w refers to conditions in the gas at the wall. The function S 1s assumed to be a
universal function of its argument, which includes as a factor the wall roughness height zp. By compari-
son of calculations with measurements in incompressible flows, Saffman and Wilcox (ref. 5) have found the
approximate variation of S in the entire range from rough to smooth walls. In particular, S equal to
100 or greater corresponds to smooth walls, as in the present application. In the far outer inviscid
flow, following Wilcox (ref. 21), e and o are given constant values that correspond approximately to
wind-tunnel turbulence and produce a negligible value of eddy viscosity.

Equations (50) and (51), used earlier to demonstrate numerical techniques, are derived from equa-
tions ?l), (106), and (107) by retention of the dominant terms ey and vy in G, retention of -g*p0pe
in eq, and deletion of all terms except -gpnp? 1in e,. Further, ¢ ¥s neglected compared to u, which
is approximated by u,. the value at the wall, and o approximated by py. These are valid approxima-
tions in the viscous sublayer. Finally, equations (50) and (51) follow from the transformation
¢ = (a/9,)2, © = (C/20)t, n = /C/20 y, where C = 8p20 /u,.

The differencing technique for the turbulence model equations according to the basic numerical method
used in this investigation is the same as for the mean-flow equations.

RESULTS

Separated Transonic Flow over an Airfoil

High Reynolds-number transonic flows exhibit several features that are important to aerodynamic
design. Flow past an airfoil in a high Mach-number subsonic freestream contains a supersonic region some-
where between leading and trailing edges. The supersonic flow becomes subsonic by passing through a
standing shock. If the shock strength is large enough, boundary-layer separation will occur. Depending
on the airfoil configuration, there may be separation at the trailing edge, as well as the shocR-induced




215

separation, and the two regions may coalesce. To further complicate the analysis of such flows, the
boundary layer is generally turbulent, and its response to adverse pressure gradients may depend on the
Reynolds number.

To develop techniques for the investigation of such flow fields and assess the influence of the
Reynolds number, the flow over a two-dimensional 18-percent-thick biconvex airfoil at zero angle-of-attack
is simulated for chord Reynolds numbers of 1, 2, 4, and 6.67x10% and a freestream Mach number of 0.775.
The numerical method used is described in the section on the integral form for nonorthogonal mesh. The
turbulence is represented by the mixing-length model defined in equations {103)-(105).

The airfoil, initially at rest, is impulsively started at time zero at the final freestream Mach
number and pressure. Figure 7 shows the control volume within which the flow field development is fol-
lowed in time. At a sufficient distance upstream of the leading edge (in this case, 6 chord lengths), the
flow is assumed uniform at the freestream conditions {u = U_, v = 0? as it is along the far transverse
boundary (again, 6 chord lengths away). The downstream boundary is positioned far enough downstream of
the trailing edge (9 chord lengths) that all gradients in the flow direction can be assumed negligible.
The surface of the airfoil is impermeable and no-s1ip boundary conditions are imposed (u = v = 0). The
airfoil is assumed adiabatic (VT-R = 0) and the normal surface pressure gradient taken to be zero
{ap/an = 0). Ahead of and behind the airfoil the flow is symmetric. To simulate boundary-layer separation
reliably, it is necessary to resolve the boundary }%xgr all the way into the viscous sublayer. As a rule
of thumb, a first mesh spacing of Aypin = (2/3)c/ ec is adequate.

The mesh shown in figure 8 contains 50 by 38 computation points. In the x direction, the mesh is
uniform over the airfoil (20 stations) and is exponentially stretched ahead (10 stations) and behind
(20 stations). In the y direction, a coarse mesh of 26 points is exponentially stretched away from the
airfoil. The innermost region is further subdivided into a medium mesh of 10 exponentially stretched
points, and the innermost of these is divided into a fine mesh of 4 uniformly spaced points. The operator
sequence (L LxLy)n (see discussion following eq. (5)) is used with different timesteps in the fine, medium,
and coarse meshes according to the relation

ot = g s

a
IVl +a+ g (u+elo

min

where h 1is the mesh spacing, v 1is the appropriate velocity, a the local speed of sound, and «; a
function of the mesh aspect ratio. A1l solutions were carried out for a time corresponding to the motion
of a fluid particle through 7.5 chord lengths in the mean flow. Convergence to a steady state was deter-
mined by monitoring the stress tensor on the body surface and in the near wake.

Figure 9 shows the variations of pressure coefficient over the airfoil surface (Cp = 2(p - p.)/p.u.2).
The inviscid pressure coefficient is included for comparison. All of the viscous so]ugions 1ie to the left
of the inviscid solution because of boundary-layer displacement effects. Of the features affected by
viscosity, the shock location is most affected as a result of flow separation that is present in the vis-
cous solutions. At the trailing edge, the viscous flow pressure distributions show a plateau in the region
of a long separation bubble extending into the wake. As the Reynolds number is decreased, the shock
strength is diminished and the shock location moves upstream. This results from the thickening of the
boundary layer and decrease in momentum, which increases the susceptibility to separation. A decrease in
Reynolds number is also accompanied by a decrease in pressure recovery behind the shock, indicating larger
displacement effects in the separated region. For the particular geometry under consideration, the influ-
ence of the Reynolds number on surface pressure distribution is not great, but is in the directions to be
expected. For the range of Reynolds numbers considered, the shock is centered (cp = cp*) between the

73~ and 75-percent chord.

Figure 10 shows the skin-friction variation over the airfoil surface (c¢ = 2t,/p_u.?). Ahead of the
shock, as the Reynolds number is decreased, the skin-friction coefficient is increased. Separation occurs
farther upstream at the lower Reynolds numbers, and, for the four Reynolds numbers considered, begins
between the 69- and 72-percent chord, some 3-percent chord ahead of the shock location indicated from the
pressure plots. Aft of the shock-induced separation region, the flow tends to reattach, but merges with
the trailing edge separation. The skin-friction coefficient distribution for the lowest Reynolds number
exhibits the widest variation in the combined separation region and, in fact, almost reattaches. This
tendency becomes less pronounced with increasing Reynolds number.

Figures 11(a) and 11{b) show variations of displacement and momentum thicknesses, respectively. Both
thickness parameters increase with decreasing Reynolds number and vary by more than three orders of magni-
tude over the length of the airfoil. Immediately ahead of the shock-induced separation region, both
thickness parameters begin increasing dramatically over the separation bubble. This thickening is due to
the reverse flow near the airfoil surface.

Typical boundary-layer profiles ahead of the shock are compared in figure 12 with the "law of the
wall." The symbols represent the numerical solution and are at values of y* that correspond to the
centers of the computation cells. The profiles each have one point in the viscous sublayer where u*
varies linearly with y* so that accurate values of skin friction can be computed. It can be seen that
resolution through the wall and wake-flow regions of the boundary layer is adequate for attainment of
realistic solutions.

Velocity profiles in the separation region are shown in figure 13. These variations over the aft
portion of the airfoil and in the wake are plotted in terms of physical coordinates. The first separated
profile is at 0.725 chord, indicating separation somewhat ahead of that station. The shock location is
immediately downstream at about 0.740 chord. The reattachment point is nearly 0.2-chord downstream of
the trailing edge. Figure 13 also shows the dividing streamline within which the net mass flow is zero.
Details of the solutions in the separated region are similar for the other cases at higher Reynolds number.
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Figure 14 is a Mach-number contour plot near the surface of the airfoil. Contours are shown for
02 Mz 1.4 in increments of 0.02. Thickening of the boundary layer as it progresses down the airfoil is
clearly indicated. At a station near 70-percent chord, the shock impinges on the boundary layer and the
flow separates, resulting in large displacement effects. Large transverse gradients in the boundary
layer gradually die out in the wake. Inside the separation bubble, the gradients are much smaller than in
the boundary layer or near wake, indicating a lower speed and nearly constant density flow.

Figure 15(a) shows isobars and 15(b) Mach-number contours from the calculation at the highest Reynolds
number Re. = 6.67x10%. These plots clearly indicate the position of the standing shock, and, in
figure 15(b), the boundary layer, wake, and separation bubble off the trailing edge are apparent. The
isobars are at 0.46 < p/p, < 1.32 in increments of 0.02. The Mach-number contours in figure 15(b) cover a
different range than those in figure 14, namely, 0.40 < M 2 1.40 in increments of 0.02. Because both the
forward and rearward stagnation regions of the separation bubble are surrounded by contours of decreasing
pressure, they are clearly discernible in the isobar plots.

Shock Induced Separation of a Hypersonic Turbulent Boundary Layer

The flow field investigated is depicted in figure 16. Air flowing from left to right forms a turbu-
lent boundary layer on a flat plate. The shock-wave incident on the boundary layer produces a separation
bubble within which there is reversed flow. Deflection of descending streamlines by the plate aft of
reattachment gives rise to a reflected shock wave. Calculations of primary interest are confined to the
neighborhood of the interaction region within the boundaries of the rectangle BCGF. Flow quantities are
held fixed along BC and CG. Zero slip and a constant wall temperature T, are imposed as boundary condi-
tions along the flat plate. Since the flow equations are either nearly hyperbolic or parabolic along FG,
there is 1ittle upstream influence, and the flow quantities at the last column of mesh points are equated
to the values computed at the next-to-last column of points in each timestep. A calculation starts from a
uniform flow, except for the imposed values along BC and CG. The turbulent boundary layer and shock wave
grow with time and, eventually, a steady-state solution is achieved. Calculations have been made based on
either the mixing-length model of reference (22) or the two-equation turbulence model described by equa-
tions (106)-(110?.

It was not known at the outset whether the bow wave from formation of the boundary layer would cause
significant effects. Consequently, calculations have also been made using the same machine code within the
boundaries ABDE. The boundary layer profiles along BD and skin friction and heat transfer computed at 8
agreed within 10 percent with calculations obtained from a machine code developed by Marvin and Sheaffer
(ref. 23) based on the boundary-layer approximation.

The experiment used for comparison was conducted by Holden (ref. 24). Measurements were made of
pressure, skin friction, and heat transfer along the flat plate in the interaction region. The case
selected for comparison is at Mach number 8.47 and Reynolds number 22.5x10® based on freestream conditions
and distance from leading edge to shock impingement. The pressure rises by a factor of 83 across incident
and reflected shocks. In the calculations, the shock strength is adjusted to match this ratio. The posi-
tion of the shock is adjusted to match the measured pressure distribution as closely as possible.

Figure 17 contains a Schlieren photograph of the experimental flow field in the interaction region.

The computational mesh employed is shown in figure 18. Spacing in the x direction is uniform with
Ax = 0.0102 ft. Mesh spacing in the y direction is also uniform within each of four regions. In the
outer inviscid region, which contains 10 rows of points, Ay = 0.0096 ft. The finest mesh near the wall
contains 5 rows of points with 4y = 5x1075 ft. Two intermediate regions containing 6 and 10 rows of
points are spaced at intervals of Ay = 4x107“ and 3.2x10°3 ft, respectively.

Figure 19 contains a plot of a velocity profile in terms of universal coordinates showing the degree
of resolution achieved. The symbols are at the computational mesh points. The viscous sublayer is well
resolved at this station in the initial turbulent boundary layer ahead of the interaction. The departure
from the law of the wall in outer regions is due to density variaiions in this highly cooled boundary
layer. An incompressible version of universal coordinates u*, y* was used for simplicity, since a check

on resolution of the viscous sublayer was of primary interest.

In regions near the wall, the turbulence model equations pose a more severe resolution problem than
the mean-flow equations. This results from steep gradients, which are themselves relatively slowly vary-
ing. The aforementioned method that produces exponential accuracy, equations (33)-(38), was used in the
Ly operator in the finest mesh. This procedure is particularly suited to boundary layers, which are
quasi-one-dimensional. Figure 20 contains plots showing the computed variations of turbulence quantities
according to the Saffman-Wilcox model. These profiles are at a station in the initial boundary layer
ahead of the interaction. The quantities are nondimensionalized in a way that produces the same variations
in the viscous sublayer at all upstream stations except near the leading edge. The peak value of e/uy,
may appear Eo be low because values of u near the peak are a factor of 4 below u,. The 3.7 power varia-
tion of eg” and -2 power variation of ot near the wall are in agreement with the exact solution of the
simplified model given in equations (61) and (62). The basic numerical method produced entirely different
variations. The modification that produces exponential accuracy is essential in this application. The
number of mesh points required for comparable results from the basic method would entail prohibitive com-
putation times. ¢

In the region aft of reattachment, the viscous sublayer becomes an order of magnitude thinner than in
the boundary layer ahead of the interaction. Straightforward application of the basic numerical method
would again require prohibitive computation times in a mesh fine enough to resolve the viscous sublayer.
Therefore, we have developed a procedure that utilizes iterative solutions of the steady-state boundary
layer approximation near the wall. Periodically, the boundary layer equations are solved iteratively to
find the values of +,, q,, (3eg/ay)y. and (3a%/3y), that provide an inner solution matching the values
of “32' (e1)ijs (es)ij» and @yj at the third row of mesh points from the wall. The inner solution then
provides values of all variables at the second row of mesh points to be used in succeeding timesteps of the
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finite-difference solution. The inner solution is repeated often enough to retain time accuracy of the
calculation.

Figure 21 contains a velocity profile obtained by the foregoing technique. At this station, in the
compressed region aft of reattachment, the finest mesh of the finite difference solution (square symbols)
does not resolve the viscous sublayer. The inner solution described above is represented by circles. It
can be seen that the inner solution, extended beyond the region in which it is used (out to J = 3) con-
tinues to match the finite difference solution farther out. Calculations were made with and without the
use of the inner solution in the separated region where the viscous sublayer is adequately resolved in the
finite-difference mesh. The results were insensitive to the use of the boundary-layer approximation within
the viscous sublayer, although it is known that the boundary-layer approximation may fail if it is used
through the entire viscous region near a separation point with appreciable pressure gradients normal to the
wall. Figure 22 contains reversed flow velocity profiles in the separated region. It is apparent that the
viscous sublayer must be resolved near the separation point. Departures from the law of the wall are
large in this region.

Preliminary calculations were in gross disagreement with the experimental measurements of Holden
(ref. 24) in the separated region. The computed pressure rise was much steeper than indicated by the
measurements. Errors from the numerical method would be expected to produce a discrepancy in the opposite
direction. It was found that this discrepancy in pressure distributions could be removed by introducing
2 momentum defect in the freestream outside the turbulent boundary layer ahead of the interaction in a
manner to be discussed shortly. The calculations indicate that the entropy layer due to the bow wave pro-
duced by formation of the boundary layer ahead of the interaction is not of sufficient strength to produce
the momentum defect needed. It is possible that intermittent shock waves caused by turbulent eddies do
produce an entropy layer of the strength needed. Since we are not equipped to compute such effects, the
flow quantities were readjusted at the upstream boundary by the amounts needed for agreement with the
experimental pressure distribution. The readjustments were made at constant pressure and constant total
temperature as though the momentum defect were produced by shock waves in the flow ahead.

Figure 23 shows the computed and assumed mass-flux profiles ahead of the interaction. The computed
profiles are from the machine code of Marvin and Sheaffer (ref. 23), which is based on the boundary-layer
approximation. They are also nearly the same as results from the machine code of this investigation
applied in the region from the leading edge to the upstream boundary for computation in the interaction
region (station BC in fig. 16). In figure 24, comparisons are shown between the measured and computed
pressure distributions with and without the assumed momentum defect. The hypersonic pressure coefficient
Cp = 2p/p.u.? is used here. Figure 25 shows computed streamlines. Although the assumed momentum defect
has only a small effect on the computed skin friction and heat transfer ahead of the interaction, it has a
profound effect on the flow in the interaction region. The modification of initial profiles doubles the
size of the separation bubble both along the flat plate and normal to it. The remainder of results in this
p?per are based on the assumed initial profiles that produce agreement with the measured pressure
distribution.

Figure 26 contains a plot of skin-friction coefficient showing the real time for a solution to reach
a steady state. This 1s a calculation based on the Saffman-Wilcox model. The solution is started from a
converged solution of the mixing-length model. The field of computation extends over a distance of about
0.4 ft (0.12192 m) and includes the interaction region. The plot shows the variation of skin-friction
coefficient at the downstream end of the computation field versus time. This result is indicative of the
minimum time that a wind tunnel should be operated to reach a state corresponding to arbitrarily longer
times. Since the entire flow field of interest, starting at the leading edge of the flat plate is roughly
six times as long as the computation field, presumably wind-tunnel operating times should be six times as
long as that indicated in the figure. The time required to reach steady state according to the mixing-
length model was about the same as in this figure.

In figure 27, comparisons are shown between computed and measured skin friction and heat transfer in
the interaction region. The skin friction coefficient is defined as C¢ = 2ww/p u.? and the heat transfer
coefficient as Cy = qy/y(CyTst - €iw)oLU,. The magnitudes of variations in the forward- and reversed-flow
regions predicted by both turéulence models are consistent with the measurements. However, the extent of
the reversed flow from both calculations exceeds that indicated by the measurements. The levels of skin
friction and heat transfer predicted by the mixing-length model aft of reattachment are well below the
measured values. The Saffman-Wilcox model prediction of skin friction is in better agreement with the
measurements, but still Tow. Additional calculations were made to estimate the degree of wall roughness
that would be required to elevate the computed skin friction to the level indicated by the experiment. It
was found that wall roughness heights less than 10-5 ft (3.048x107€ m) would not be effective. Information
from Holden (ref. 24) indicates that the flat plate itself was an order of magnitude smoother than this.
However, the skin-friction-element mountings did present discontinuities of that order to the flow. It may
be difficult to make measurements that do not disturb the flow in viscous sublayers as thin as that which
develops at the conditions of this experiment.

Differences in the predictions from the simpler (mixing length) and more advanced turbulence models
will be discussed presently. The reason for overestimation of the heat transfer aft of reattachment by
the Saffman-Wilcox model is not known. The rapid rise of Cy 1in the neighborhood of reattachment can be
attributed to two factors. A high level of turbulent energy is generated over the separation bubble. This
turbulence is convected by descending streamlines to a region near the reattachment point. At the same
time, the pseudovorticity at the wall goes to zero when =1, is zero and a finite value of S =100 is
imposed in the boundary condition (eq. (110)). Consequently, the eddy viscosity assumes relatively large
values near the reattachment point, compared to values somewhat removed at the same distance from the
wall. This is i1lustrated in figure 28, which contains plots of the ratio of eddy viscosity to molecular
velocity at the wall. This anomaly will probably be removed by later versions of the boundary condition
on pseudovorticity.

Profiles of the model variables at a station near the downstream end of the computation field are
shown in figure 29. The levels of eddy viscosity aft of reattachment according to the Saffman-Wilcox
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model are everywhere larger than those from the mixing-length model. This difference can be attributed to
lags in adjustments along streamlines, not accounted for by the mixing-length model. According to the
Saffman-Wilcox model, turbulence generated over the separation bubble persists downstream and diffuses
toward the wall. This effect can be illustrated by defining an equilibrium turbulent energy (es)eq as
that which would be present if the production and dissipation of turbulent energy were equal with negli-
gible contributions from convection and diffusion. Setting e, equal to zero in equation (107), neglect-
Ing all velocity derivatives except |au/ay|, and multiplying %erms inside the bracket by e = eg/2 leads
0 the relation

u (1)

- o* e
(e.) %y

s'eq B¥p

This is equivalent to Townsend's (ref. 25) definition of equilibrium turbulent energy (with the same numeri-
cal constant). In attached boundary layers with zero pressure gradient, eg assumes values close to

(e )eq. except near the wall. Figure 30 contains plots of the ratio eg/(es)eq from the foregoing numeri-
ca? solution. The behavior at a station ahead of the interaction is typica? o? attached boundary layers.
The large increase near the wall results from inward diffusion of turbulence, which is destroyed by
enhanced degradation and viscous dissipation. However, the peaks in the ratio at downstream stations arise
from rapid changes in flow quantities along streamlines. The Saffman-Wilcox model calculation indicates
that appreciable departure from equilibrium persists aft of reattachment through the remainder of the com-
putation field.

Calculations of the type described can aid in the design of experiments for the purpose of testing
the turbulence models that are evolving. Sensitivity of the flow to experimental practices as well as to
computational approximations can be found. Prediction of the required wind-tunnel residence time to
establish the flow was insensitive to approximations in the calculations. An unexpected sensitivity of
the separated flow field to conditions in the oncoming stream ahead of the interaction was predicted by
both turbulence models. The height of permissible roughness on instrumentation that would not disturb the
flow in an unknown manner was not greatly different according to the two models for which calculations
were made. The calculations were insensitive to use of the boundary-layer approximation within the viscous
sublayer, although this approximation may fail if applied farther out in the presence of appreciable
pressure gradients normal to the wall. Hopefully, future interaction between experiment and calculation
will produce measurements of the needed profiles outside the boundary layer ahead of the interaction.
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OOMPUTATIONAL TECHNIQUES FOR BOUNDARY LAYERS
by
F. G. Blottner
Sandia Laboratories
Albuquerque, New Mexico 87115
United States

SUMMARY

The present status of the numerical computation of boundary layers is given for two- and three-
dimensional flows. The appropriate transformations to apply to the governing equations are considered,
and the possible solution procedures are discussed. The emphasis of this paper is on the finite-
difference procedures which are illustrated for the two-dimensional, incompressible flows. For compres-
sible flows the Crank-Nicolson technique is given. The changes which are needed to this approach, when
the flow is turbulent, are presented. The finite-difference procedures utilized for unsteady flows are
given. Solution techniques for three-dimensional flows are described and the features which are different
from two-dimensional flows are emphasized.

1. INTRODUCTION

There have been several survey papers concerned with the solution of the boundary-layer equations.
Paskonov and Chudov’ have reviewed papers concerned with finite-difference methgds of sclution of the
boundary-layer equations. A similar type of review has been given by Blottner,” and also presented is a
technique for solving the boundary-layer equations for a multicomponent gas mixture. A general survey on
boundary-layer research has been made by Smith® where a brief review is given of solution techniques.
Also, several books are available on some of the methods. An implicit finite-difference procedure is
given in the book by Patankar and Spalding* and is applied to two-dimensional laminar and turbulent flows.
A complete description of the differential-difference method of Smith and colleagues has been published
by Jaffe and Smith.” A limited account of solution techniques for three-dimensional, turbulent boundary
layers is presented by Nash and Patel.® Also, a forthcoming book by Cebeci and Smith’ is concerned with
the solution of the turbulent boundary-layer equations with the Keller box scheme.

The purpose of this paper 1s to give a description of the methodology of the numerical solution
techniques for boundary layers and to present one method of solution in detail where it is applied to the
various boundary-layer problems. This paper is not intended to include all the solution techniques that
have been applied to the boundary-layer equations. The emphasis will be on finite-difference procedures
with the method of weighted residuals and the matrix-integral method being only briefly mentioned. This
neglect mainly results from the author's lack of first-hand experience with these procedures and not that
one approach is better than the other. An adequate evaluation has not been made of these methods, although
an initial attempt was made as reported by lLewis.  Also, there is a need to be aware of the various
techniques which have been proposed, as some of these methods were perhaps before their time. For example,
one approach results in a system of stiff ordinary differential equations and when this method was origi-
nally investigated, a good computer program for the solution of these equations was not available. The
second objective of the paper is to present a good method for solving boundary-layer flows. The method
chosen is the Crank-Nicolson finite-difference scheme with which the author has had first-hand experience.
This 1is one reason it is chosen, but, in addition, this type of numerical procedure has proven to be a
good technigue for solving the boundary-layer equations by many people. Also, most of the other methods
have received rather complete coverage by other authors while the Crank-Nicolson method has not been
cdiscussed in detail for various boundary-layer flows in a unified manner. There have been some recent
developments in this method which are just becoming available in the literature. Therefore, the present
formulation of the Crank-Nicolson scheme 1s relatively new and results in a second-order accurate scheme
in both coordinates.

There are a number of subjects and items that are related to the numerical solution of the boundary-
layer equations that have not been included. Such things as higher order boundary-layer theory, real
gas flows, various boundary conditions, and other boundary-layer-like flows have been neglected. The
use of higher order boundary-layer theory has not been included as it has not proven to be a useful
approach, as yet. The introduction of real gas effects into the governing equation introduces at least
one signiricant problem if finite-chemical reactions are considered. The production terms make the
governing species equatlons "stiff" and the numerical procedure must take this into account. One approach
has been given by Blottner® for a first-order scheme in the flow direction where the equations are
handled in an uncoupled manner. For higher order schemes, coupling of the governing equations is
probably required, but this has not been established. The use of wall boundary conditions or inviscid
edge flow conditions has generally very little influence on the numerical solution technique. There is
perhaps one exception, the case of massive blowing at the surface. Libby has indicated that some of
the numerical methods fail for this case, and he has used an asymptotic analysis. As the title of this
paper indicates, only boundary-layer flows are considered. However, the techniques presented in this
paper can be applied to other fluid flows. For example, Hornbeck'® has presented finite-difference
solution techniques for boundary layers, jets, free convection, channel flow, and tube flow. There
have been many people who have used the established numerical solution techniques for various boundary
layer flows. These papers have not been referred to in most cases, although there might have been some
improvement in the numerical schemes. If the author has overlooked something of importance, it 1s not
intentional, but is due to limitation of time and the large number of papers that have appeared.

—
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The paper is divided into a number of sections with the governing equations for a laminar, three-
dimensional, unsteady boundary-layer flow given in Section 2. The numerical solution of various forms of
these equations will be considered. For turbulent flows, the governing equations depend on the closure
model. Therefore, the special equations used to illustrate the solution of turbulent flow will be dis-
cussed in that section. Since a large class of boundary-layer problems is included with the two-dimensional
and axisymmetric steady equations and transformations of these equations have been developed, Section 3
presents these governing equations. Then a review is given of the transformations that have been used
with numerical solutions. The governing equations in terms of Levy-Lees variables are presented, and this
form of the equations are used for the subsequent numerical solutions. In Section L the solution techniques
for solving the similar boundary-layer equations are given. It is necessary to solve these equations in
order to obtain initial profiles of the dependent variables which gives the initial conditions for the
solution along the surface. The solution techniques for these two-point boundary-value, ordinary differ-
ential equations are extremely important as they can be utilized in the two- and three-dimensional problems.
A review of solution procedures that have been used is given. Then a finite-difference procedure which
uses Newton-Raphson linearization is presented. The method keeps the finite-difference equations for the
continuity and momentum equations coupled, which is shown later to be significant for solutions along the
surface. Also, the Keller midpoint scheme is illustrated in this section.

A review of many of the difference methods for solving the non-similar, two-dimensional and axi-
symmetric boundary-layer equations is given in Section 5. These are illustrated with the Levy-Lees form
of the incompressible, boundary-layer equations. The procedure considered best for solving the incompres-
sible equations is described in detail in Section 6. The convergence of the iteration procedures used to
solve the nonlinear, finite-difference equations required for a second-order scheme is discussed. Also,

a procedure of judging the accuracy and order of a scheme is presented. The incompressible, finite-
difference scheme is extended to the compressible boundary-layer equations in Section 7. The difficulties
of even knowing the governing equations for a turbulent boundary are indicated in Section 8. For turbulent
flow, the major numerical problem results from the large gradients which occur near the surface and the
resulting need for a large number of grid points across the layer. A variable grid scheme is presented
which is used with the Crank-Nicolson scheme and gives a second-order accurate solution.

In Section 9 the extension of numerical techniques for steady boundary layers to the unsteady case
is reviewed. The Crank-Nicolson scheme can be readily used for this problem if there is no reverse flow.
The formulation of the boundary conditions and initial conditions appears to be the major difficulty.

The solution techniques for solving three-dimensional boundary layers are described in Section 10.
The features which make the three-dimensional problem different from the two-dimensional flow are described.
The selection of the coordinate system is considered, and a description of the finite-difference schemes
are given.

The final section, 11, is a summary of the status of computational techniques for solving boundary
layers.

2. BOUNDARY-LAYER EQUATIONS

The general form of the governing laminar equations is now considered, and the notation is chosen to
give the time-honored form of the two-dimensional, boundary-layer equations as suggested by Van Dyke.“
Since unsteady flgws and three-dimensional flows will be investigated, the form needed was originally
derived by Hayes'® and can also be found in the books by Stewartson'” and Moore.'* An orthogonal system
of curvilinear coordimates (x , y, x,) is employed on the surface over which the boundary layer is flowing.
The coordinate normal to the surface is y with y = O being the surface. The lines = constant and x, =

constant give a system of orthogonal coordinates on the surface. The square of the element of arc di on
the surface is

2 o 2OR 2 2m. 2
de® = hydxy + hydx (2-1)
where and h, are metric coefficients and a function of and x,. Since the boundary layer is assumed
thin, met.ric coefficient in the y direction is assumed to be gne which gives for the square of the
element of arc in the boundary layer the following relation
2 2,2 2 2,2
ds® = hjdx] + &y° + hidx; (2-2)

It is assumed that the local boundary-layer thickness is small compared with the principal radii of
curvature of the surface. The resulting equations are referred to as the thin or first-order boundary-
layer equations.

The substantial derivative for the above coordinate system is

D 8 ,mn9d 2 w 3
o2 v e (2-3)
b &1' % " hy 3
where t is time, and u, v, w are the velocity components in the directions of the x}’ ¥, axes,
a

x
respectively. The boundary-layer equations for an unsteady compressible perfect gasS flow v;ith constant
specific heats, cp’ and constant Prandtl number, Pr, are




Contimuity
A 1 9 3 0 + a_ =
v h_lh—3 E (h3 ou) + 71 (hlhj v) o <h1 W)] 0 (2-4)
Xy - Momentum
Du 2 3 X

Y_-_ Momentum

% -0 (2-6)

x, - Momentum
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B R B3 (Y
Bnergy

BB (Y

The geodesic curvatures of the surface coordinate lines have been introduced and are given by

1 N
8 —— for x, = constant (2-9a)
= Rk Bx 3
Sh
K3 = h_11h—3 é for x, = constant (2-9v)

the other notation in the above equations, (2-L) to (2-8), is the density o, the viscosity u, the
temperature T, and the pressure p, which is constant across the boundary layer as Eq. (2-6) shows.

The governing equations are completed with the equation of state
p = PRT (2-10)

and a viscosity law
b= u(T) (2= )

The foregoing boundary-layer equations are solved with the boundary and initial conditions which
will now be described. If the usual no-slip condition is used, then the velocity camponents at the
surface (y = 0) are

u=vae=w=0 (2-12a)
with maes transfer at the surface, the velocity component v is specified. Also, the velocity component

w can be non-zero with a specified value for a body of resolution with spin. The final surface boundary
condition is the wall temperature or heat transfer is prescribed which gives

T = Tw(t, X x3) or %;1;‘ = qw(t, X5 x3) (2-12b)

At the outer edge of the boundary layer (y — =) the classical approach is followed where the velocity
components and the temperature are set equal to the inviscid flow quantities at the surface. These
boundary conditions are expressed as

u =t x, %) (2-13a)

t
[]

We(t: xl’ X}) \Z'ljb)

3
u

Te(t; x-l, xj) \'?'13(:)
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The governing equations for the inviscid flow at the surface where Ve

= 0 are

du u w_

s e+—93g°+ -2 (2-1ka)
h‘_L h3 uw H:K} phl x

w u ow W

L

§+qe e+h_e » Ue ue"e%--@% (2-1kb)
T u_oT w_oT u w

R R I B L - ()

where the subscript e indicates the quantities are the conditions at t
The pressure gradients required in the boundary-layer equations, (2-5)
mined from Eqs. (2-14) with the boundary conditions (2-13) employed.
the pressure as a function of t,
conditions to solve the partial
W, and the temperature T s

If sufficient initial conditions are provided in a plane perpendi
boundary-layer equations can be solved in a region downstream if the z
dence are properly taken into account. These zones have been discusse

Wang.16 The suffici;nt conditions to start the solution of the bounda
considered by Ting.'” These topics will be discussed further when the
considered.

3.

he edge of the boundary layer.
, (2-7), and (2-8), are deter-
Another approach is to specify

, and x, and then with the appropriate boundary and initial
ferential equations, (2-1L), for the velocity components u_ and

cular to the surface, the
ones of influence and depen-
d by Der and Raetz™ and
ry-layer equations has been
various problems are

TRANSFORMATION OF THE TWO-DIMENSIONAL AND AXISYMMETRIC STEADY EQUATIONS

The governing equations for these two cases are written with the use of the parameter J which is

O for two-dimensional flow and 1 for axisymmetric flow. The surface ¢
metric coefficients become

X =X and h1'1

‘ 2z two-dimensional

x3 = and h3
fcp axisymmetric

urvilinear coordinates and the

(3-1a)

= rdx) (3-1v)

where x is the distance along the body surface measured from the tip or the stagnation point; z is the

distance in the direction normal to the two-dimensional plane, and r
revolution. The boundary-layer equations, (2-4) to (2-8), for this ca
gives

Continuity

x - Momentum

Energy

ucua*focv%-u%gx 'b?(Pr‘d?)

where the pressure is constant across the boundary layer.

These equat
equation of state, (2-10), and the viscosity law, (2-11).

is the radius of the body of
se have a/bx3 = 0 and w = O which

(3-2)
(3-3)
(%}2 (3-1)

ions are completed with the

In the development of boundary-layer theory there has been a number of transformations applied to

the governing equations.
procedure could be applied directly to the physical coordinate, Egs. (
several difficulties when this form of the equations is used, such as:
ness usually increases downstream, (2) for bodies with a sharp tip or

For the numerical solution of the boundary-layer equations a finite-difference

3-2)-(3-4). However, there are
(1) the boundary-layer thick-
leading edge there is a singularity

at this location, and (3) for hypersonic flows, the tangential velocity has a large gradient near the

outer edge.

The solution of the equations in physmal coordinates has
Lotz and Yu,'®

, Brailovskaya and Chudov,'® Paskonov,

been used in the wark of Fligge-

° and Blottner and Fliigge-lotz.’
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The von Mises form of the equations has been used by Mitchell and 'l‘homson,23 Mitchell,":’ and
Patankar and Spalding.”* For these equations the independent variable is x and the stream function is ¥,
which satisfies the continuity equation. The governing equations become the transformed momentum and
energy equations. However, the momentum equation has a singularity at the wall which makes the von Mises
form of the equations difficult to solve numerically. This singularity has been overcome by Mitchell
and Thomson with an expansion for the velocity in the vicinity of the wall.

In much of the ear:!ég work in solving the bow_.}c.}ary-layer equations, for exaxggle, F‘].iigge-Lot‘.z,35
Flugge-Lotz and Baxter, Baxter and Flugge-Lotz,”  and Kramer and Lieberstein,” the Crocco form of
the equations is employed. In this transformation the independent variables x and y are replaced
by x and u and the dependent varlable is the viscous shearing stress 7. The continuity and momentum
equations are combined with this transformation. With this form of the governing equations, the range
of the independent variable u is finite and the outer edge is well defined. However, there are several
disadvantages with this transformation as there is a singularity at the outer edge of the boundary layer.
For the case with velocity overshoot, it is difficult to apply the Crocco form as quantities are double
valued as a function of u.

Other tgansfomations such as the Dorodnitsyn-Howarth have been used by wa°® and Blottner and
Flugge-lotz. ! This transformation removes the density from the formal equations by introducing a new
normal coordinate which is a function of the density. Sills’° has transformed the semi-infinite boundary
layer normal coordinate into a finite interval before obtaining a finite-difference solution.

One of the problems with all of the previous methods is the starting of the solution of the equations.
For sharp bodies, one would want to start the solution at the tip, whereas for a blunt body the solution
should start at the stagnation point. At the tip of a sharp body, the boundary-layer thickness is zero
and the solution in physical coordinates is inappropriate. If the boundary-layer equations are trans-
formed into similarity variables, then in the transfommed plane the boundary layer is nearly of uniform
thickness for many flow situations. Also, the partial differential equations reduce to ordinary
differential equations at the tip of a body or at a stagnation point. The foregoing transformations can
be placed in similarity form, but the transformation that has been generally employed is the I.evy-Leeus."1
This form of the equations was used Blottner”~ for a binary gas mixture and will now be applied to
the governing equations, (3-2) to (3-4). The new independent variables are

y
Wx, y) = uerg \/—2%7[ o dy (3-5a)
0

X
6(x) = Jv*!- (on),, ugrgd ax (3-5b)

where .18 a constant and the derivatives become

CREMCOME g 38 3 (3-60)
3 . j d
= ou, Ty HE i (3-6b)
The new dependent variables are
F = wu, (3-7a)
® = h/h, = T/T, (3-7v)
V = 26(F 3W/ax + ov rIABT/H)/LK (o), u_ ro))] (3-7¢)
The governing equations become
Continuity
2 F/E + dV/RN + F = 0 (3-8a)
X - Momentum
26F AF/3E + V OF/3N + B(F? - 8) - 3(4 3F/31)/31 = O (3-8b)
Energy
2EF 20/3% + V 38/30 - ak(3F/aN)? - (1/Pr) 3(2 38/aM)/3N = 0 (3-8¢)

where the following notation is introduced
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£ = ou/(ow) (3-9a)
8 = (28/u,) du_/df (3-9b)
o= ui/(cpTe) (3-9¢)

The above Egs. (3-8) can be written without the continuity equation which is automatically satisfied with
the introduction of the stream function ¢ = f,/2§7.7( . The velocity components become

Pu rg = d¥/d3y = o u, rg df /a7 (3-10a)

PV r'j = - dy/3x = 28/ {Jﬁ’(ou) u, :rb (2§ = + f) /(28) - (d/ex)(af/aMm) (3-10b)

With F = 3f/97 and the definition of V, the following is obtained

V = - (28 2f/3% + 1) (3-11)
The governing equations become
x_~ Momentum
2
2 2 4 2
of a°f af 3°f d o°f o of
2§( =T - —)- (L—)+f—+8 (9- ( ) ] (3-12a)
33T T E 2] T g2 o )
Energy
2.\ 2
of 38 of 38 1 9 38 26 o f

The boundary conditions for the foregoing equations are as follows:
At wall (without mass transfer and specified wall temperature)
NM=0 : F=V=f=0and Q-GH (3-13)
At outer edge
M=7, ¢ F=o0=0r/21=1 (3-1L)

To complete the governing equations initial conditions can be obtained at § = O from Egs. (3-8) or
(3-12) which become ordinary differential equations.

4. SIMILAR SOLUTIONS

L.l Similar Boundary-layer Bguations

The partial differential equations for the boundary layer can be reduced to ordinary
differential equations when € = O or when the Z-derivatives are zero. At the tip of a sharp body
or at a stagnation point, € = 0. The flow along a flat plate and incompressible wedge flow have the
E-derivatives zero. Also, the assumption of local similarity (£-derivatives zero) can be used to
obtain approximate solutions to same flows. The usefulness of similar solutions is of limited value
now that complete two-dimensional flow solutions can be readily obtained. However, there is the need
to obtain profiles of the dependent variable in order to have the initial conditions for the two-
dimensional solutions. These profiles are obtained from the similar form of the governing equation
which for Eqs. (3-8) become

av/3N + F =0 (L-1a)
3(L 3F/3N)/37 - V F/3N + B(® - F2) = 0 (4-1b)
3(1 26/37)/3N - Pr V 38/37 + Pr at (3F/3N)2 = 0 (4-1c)
while Eqs. (3-12) become
l°) UL 2
£ 2L} r 2L g0 - (ar/am?l - 0 (h-2a)
3 ( anz) an

-g-ﬁ (z gﬁ) +Prf %% + Pr ot (3%/31%)2 = 0 (L-2b)
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For the similar form V = -f. The similar equations constitute a system of nonlinear, ordinary
differential equations and are of the two-point boundary value form with the boundary conditions
previously given in HEgs. (3-13) and (3-1L). At present, there are no computer library subroutines for
solving this type of problem, but a variety of techniques have been used and some will be described
in the next sections. A more complete study of numerical methods for solving two-point boundary-value
problems is given by Keller,”~ for example.

4.2 Initial Value Methods (Shooting)

This procedure changes the boundary-value problem into an initial-value problem. New boundary
conditions are assumed at one end of the interval of integration such that sufficient initial conditions
are available to start the solution. The assumed boundary conditions are changed until the integrated
equations satisfy the original boundary conditions at the other end of the interval. The similar boundary-
layer equations are usually written as a system of first-order ordinary differential equations which then
allows any of the standard integration procedures to be employed. Then a Newton-Raphson technique is used
to iterate on the boundary conditions that have to be determined as initial conditions. This type of
procedure has been applied to the compressible boundary layer for a perfect gas by Reshotko and Beckwith®*
and for a real multicomponent air mixture by Lenard.® For the more complicated problem, there can be as
many as seven boundary conditions that must be assumed and iterated on until the outer edge conditions are
satisfied. Not only does the initial-value method rapidly become exceedingly difficult to apply to
boundary-layer problems with complex flows, it is also difficult or impossible to make the procedure
converge. The nature of the last problem has been illustrated by Fay and Kaye“'e for a linearized
equation. For this example the solutions consist of exponentials and if the guessed initial condition
is not correct, an extraneous part of the solution grows exponentially and will dominate the initial-
value solution.

Other initial-value methods have been used to improve the convergence of the Newton-Raphson method.
Nachtsheim and Swigert‘” have used a least-squares convergence criterion method which introduces
additional perturbation, ordinary-differential equations. Another idea of integrating initially to a
value of the independent variable less than the desired value has been investigated by Roberts and
Shipman.®® The boundary conditions can be satisfied for a smaller than desired value of the independent 1
variable. With this procedure repeated several times, the sclution can possibly be extended to the end
of the desired interval. A similar method has been investigated by Keller®® where the interval is
divided into several subintervals.

Perhaps the most successful initial-value approach uses a Newton-Raphson technique to linearize the
governing equations. Then the linear equations are used to obtain a particular solution and a homogeneous
solution for each boundary condition. The particular and hamogeneous solutions are then combined such
that all of the boundary conditions are satisfied. This approach was first suggested for boundary-value
problems by Hestenes”® and was later developed further by Bellman and Kalaba*® and referred to as quasi-
linearization. This technique has been used by Radbill*’ to solve the Falkmer-Skan equation and has been
investigated further by Libby and Chen‘® where the question of uniqueness is considered. It should be
noticed that the shooting method with quasilinearization can encounter difficulties if the initial-values
solutions grow exponentially and become very large over the interval of integration.

A parametric dif ferentiation technique has been applied to the solution of nonlinear flow problems
by Rubbert and landahl.*® This method is appropriate for a problem with a parameter in the governing
equations and where a solution exists for one value of the parameter. The technique then proceeds to
find the solution away from the known solution with changing values of the parameter. The Falkner-Skan
equation has been solved with B being the parameter and the resulting differential equations being
solved with the Runge-Kutta integration method. Although the initial value method was used, for this
problem the methods of the next section could also be utilized.

L.3 Finite-Difference Methods

In this approach the derivatives in the governing equations are replaced with finite-difference
relations and the resulting equations are solved such that all the boundary conditions are satisfied.
For nonlinear ordinary differential equations such as the boundary-layer equations, the finite-difference
method results in a system of nonlinear algebraic equations. In all of the methods the governing equations
or the differential equation must be linearized in order to obtain a system of linear algebraic equations
which can be solved readily. With this procedure it is necessary to assume an initial guess for the
dependent variables. Then an iteration process is required until the guessed variables match the calcu-
lated variables from the solution of the linear algebraic equations. The manner in which the linearization
is performed on the differential or difference esuations is very important. The method of nonlinear
simulataneous displacements has been used by Lew * to solve the Falkner-Skan system of nonlinear difference
equations. With this approach only one dependent variable at one grid point is assumed unknown in each
difference equation with the remaining variables assumed known from a previous iteration. If the one
dependent variable appears in a nonlinear manner, Newton-Raphson linearizatlion is applied to give a
linear equation. This method requires the solution of explicit algebraic equations for the dependent
variables which are relatively easy to solve. However, the convergence of this method is not as rapid
as the methods which are described subsequently. Another approach is to uncouple the governing equations
by considering only one dependent variable is unknown in each equation. When that variable appears in a
nonlinear form in the equation, some convenient linear form is used to replace these terms. The result-
ing equations will be of tridiagonal form for each governing equation. This type of procedure has been
used by Varzhanskaya, Obroskova and Starova,*® Hol'h,‘6 and Fay and KAye."6 Another method to linearize
the equations is to use a Newton-Raphson or quasilinearization approach. With this method the nonlinear
terms are evaluated with a truncated Taylor's series. The resulting equations will be coupled and the
finite-difference equations will be of block tridiagonal form. This approach has been used by Casaccio
(called method of linear corrections) and Sylvester and Meyer,'® Keller and Cebeci‘® and Werle and
Bertke.®® The previous linearization considered above usually results in a simpler system of difference
equation to be solved but requires more iteration to obtain a converged solution. The Newton-Raphson
approach results in more complex difference equations but requires fewer iterations to converge. This
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procedure also appears in general to have a better chance of converging.

To illustrate the finite-difference method with Newton-Raphson linearization, the incompressible
boundary-layer (Falkner-Skan) equations are considered. For this case £ = 1 and € = 1. The present
approach was suggested by Davis and used by Werle and Bertke.’® The continuity equation, (4-1a), is
evaluated at the point (j - %) with the terms in the equation evaluated with second-order accuracy
(truncation error of the difference equation is of the order of the step-size squared) which gives

(@u/aN), = (¥ - ¥y, )/80 + o(an’) (4-3a)

+ 2 -
FJ-!E (Fj Fj-l)/2 + 0(a1%) (4-3b)
where AT = ('l']:j - T]J_l). The resulting expression for the continuity equation becomes

Vy= ¥y -(1/2) aN(Fy + F (L-L)

3" 7 31
The nonlinear terms in the momentum equation, (L-1b), are linearized with the Newton-Raphson
procedure which gives
F2 = oFF - F (b-5a)
V 3F/3N = - ¥ aF/aN + ¥ aF/an + v 3F/30 (L-5b)

where all quantities are evaluated at j and quantities with a bar are determined from a previous
iteration. The terms in Eq. (4-1b) are written in finite-difference form at the point j with the use
of Eq. (4-5) to obtain

2 2 2
PR/’ = (Fy,) - 2Ry + By )/0M (L-6a)

Fia
v 3F/31 = -Trj(iJ+l - F*j_l) + VJ(Fj+1 -Fg) ¢ vj(Fjﬂ - ?j_l) /287 (L-6b)

The momentum equation, (L-1b) becomes the following finite-difference_equation with the use of
relations (L-5a) and (4-6) and all terms have been multiplied by (-AT2/2):

AgFs ) ¢ ByFy - CyF ) +a vy = Dy J =23, 0 -1 (L-7)
where
Ay= Trj av/2)/2 (4-Ba)
By =1+ AP oF (L-8b)
¢y = (- Trj aT/2)/2 (L-8c)
D, = (a1%/2) |6 + BF% + T, (F,., - F. .)/(260) (4-84)
J 3 JU i J-1
aJ = (FJ+1 = Fj'l) An/h (h'se)
The wall boundary conditions are located at the point j = 1 where Fl = Vl = 0 while outer edge boundary
conditions are located at the point j = J where F, = 1. The finite-difference equations, (L-4) and
(4=7), are coupled and are used along with bo conditions to determine the two unknowns VJ and Fj’

at the grid points j = 1, 2,°*+J. The coefficients of Eq. (L-7) depend on the variables T’j and Fj

which are known from an initial guess or the previous iteration. For the initial guess, the present
approach sets F, = 1.0 everywhere except Fl = 0 and then VJ is determined from Eq. (4-4). The

difference equations, (L-4) and (4-7), are readily solved with a modified tridiagonal algorithm
developed by Davis as reported in Werle and Bertke. An extended version of this method is given in
Appendix A. Although this method only looks slightly more complex than the usuwal Thomas algorithm which
is given in Appendix B, the modified version requires approximately twice the computer time. In order
to uncouple the difference equation, many authors assume that the term a.jVj in Eq. (L-7) is known.

With this procedure Eg. (4-7) is of the usual tridiagonal form and F; is obtained with the Thomas
algorithm. Then V., is obtained from Eq. (L-l) and an iteration procgdure is performed until Fj and Vj

are known to the desired accuracy. This approach converges slower than the Davis coupled method which
uses Newton-Raphson linearization and has quadratic convergence (#). For the Blasius equation and the
same criterion for convergence, the coupled method requires 4 iterations while the uncoupled method
requires 13 iterations.

e 6[1: is the error in the computed solution for the ith iteration, then B(iﬂ') * K[6(i)]2 where
K is a constant.
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If the approaches are employed with a large step-size ATl or the maximum T is very large, there
will be an oscillation of the results with each grid point location. If V is assumed known and Eg.
(4-7) is taken as the difference equation, then Keller®” has shown there is a unique solution if the
following condition is satisfied for the step-size:

an = 2/]v| (4-9)

With T = 6, V= -},.78 which gives AT < 0.42. Since V increases with 1, then with T] large the step-

size ATl must be much smaller. Also, Greenspan °! states that the selution of the tri agonal equations,

(4-7), (with V known) exists and is unique if the system is diagonally dominant (B > AJ| + |CJ|)

If 8 >0, then diagonal dominance is assumed if relation (4-9) is satisfied. Price, Varga, and Warren® -
have obtained relation (4-9) as a necessary and sufficient condition for non-oscillatory solution of
Eq. (L4-7) with V a constant and B = 0.

Another finite difference method for solving the boundary-layer equations has been developed by
Keller and Cebeci*® which uses the Keller®® midpoint scheme. The method writes the governing equations
as a system of first-order equations which for the incompressible equation, (L-2a), gives

/3N = u (L4-10a)
/3N = v (L-10b)
dv/oN = -fv -~ B(1 - u2) (4=10c)
with the boundary conditions
£f(o) =0 ; u(o) =0 and uf(=) =1 (4-11)

With the midpoint, second-order accurate finite-difference approximation, the governing equations

become
(£y - £,,)/80 = (uy +u, )2 (k-12a)
(uj - uj_l)/AT] = (vJ + vj_l)/2 (L-12v)
2

(Vj - vJ_l)/AT] — -(fV)J'& - B + Buj.% (h-lZc)

Equation (4-12c) is linearized by Keller and Cebeci by first writing:
£=F +06f (4-13a)
u=u+ by (4-13b)
v = -v + 6v (h'IBC)

These quantities are substituted into Eq. (4-12c¢c) and quadratic terms in &f, éu, and 6v are neglected.
Again, the quantities with a bar are obtained from the previous iteration, and f, u, and v are the
results from the iteration. In the work of Keller and Cebeci, the difference equations are written with
6f, bu, and &v as the unknowns being determined. The approach developed here will be to use f, u, and
v as the unknowns which is similar to that developed in the previous method, Eqs. (L-4) and (- 7)

Equation (4-12c) is linearized with the relations

fv = -7 +3f + Tv (L-1ka)
w? = 2% - @2 (L=1kb)

and quantities at j-% are evaluated with
Wy = (W, + W, 1)/2 (4-15)

where W represents f, u, or v. When the above relations are utilized in Eq. (L-12c), the linear form

becomes

af, -a,f +bu, -b,u +o,v, - C,V

33 g J=t I Y J -1 373
where

(L-16)
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1 -
(::}']."‘-2'An.f.'j_}2
~ 1 =
cj 1--2-A'ﬂfj_;5

o AT(FS =2
Sy = 8NET), 4 - AT BQ +Hy,)

The difference equations for the present scheme are Eqs. (4-12a), (4-12b), and (L4-16) with j = 2,3,kL,---J.

As Keller has shown, these equations can be written as a system of block-tridiagonal equations.

The

boundary conditions (L4-11) and the difference equations are written as the following system of equations
where Eq. (L-12b) with j = 2 is written as if it is a boundary condition:

£,=0 (4-17a)
w - 0 (h-17b)
u, - % AT](V2 + vl) =0 (4=17¢)
In the following, j = 2, 3, 4,-++, J -1
s
£,- 85,3 My +u,,)=0 (4-174)
L. <& -c = S
af, - ay fj-l + bjuj b:]uj-l + chJ cjvj-l S:j (4-17e)
1
Ut ¥yt ATl(vy_l + vj) =0 (4-17£)
while the remaining equations glve
1 1
fJ - fJ-l -3 AN uJ_l 3 ATy (L-17g)
ayfy - apty - By vegvy - Syt S5 - Yy (4-17n)
uJ =] (L4-171)
The above Eqs. (4-17) are written in matrix form as
o o M U e (4-18a)
-Ajwj-l i ijj - CJWJ+1 = Dj J=2,3,¢°+,d-1 (4=-18b)
-AN )+ BM =D (4-18c)
where the various terms are
I3 1 0 0
WJ = uj Bl =10 1 O
v 0 0 -aW2
)
0 0 0 0
Cl =10 0 0 Dl =10
o -1 ATy/2 0
il AT/2 0 1 -ATY2 O
Ay =133 by ° By=l3s P 9
0 0 0 0 -1 -AW2
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0
D, =|s.
J J
0

1 0o o0

Bj=la; 0 ¢

0 1 0

The above Eqs. (L-18) are solved with the block-tridiagonal method which is described in Appendix B.
The midpoint scheme has rapid convergence of the iteration procedure as in the avis coupled method,
but the solution requires the use of the more time-consuming block-tridiagonal difference equations.

The foregoing midpoint, finite-difference scheme hﬁs been utilized in a method to obtain Falkner-
Skan solutions with reverse flow by Keller and Cebeci. Also, the previously described Davis coupled
scheme has been used to obtain reverse flows by Werle and Bertke.’®

5. NON-SIMILAR SOLUTION TECHNIQUES
5.1 Introduction

Some of the various numerical techniques that have been employed to solve the two-dimensional
boundary-layer equations along a surface are presented. A complete description is not intended but only
the basic ideas of the methods will be given. In order to illustrate the various techniques, the
incompressible equations are employed and are obtained from Eqs. (3-8) where 8 = 1 and £ = 1 which gives

2F 3F/3E + V/AN + F = O (5-1a)
2BF JF/OE + V OF/3N + B(FZ - 1) - 3°F/312 = 0 (5-1b)
or Ej. (3-12a) becomes
2 2 3 2 2
af 3¢ af ) . Pr, .3 f f
2t (aﬂ 3T~ B 2 ) o v - (§) ] (5-2)

The boundary conditions have been given previously by Egs. (3-13) and (3-1L).

In the description of the various finite-difference schemes a uniform grid will be employed. The
grid point locations are given by nj+l = ﬂj + AT} where ﬂl =Qand j =1, 2, 3,-++, J and §i+l =5 + 08

where §1 =Qandi=1, 2, 3,:--+, I.

Also, many of the non-similar techniques reduce to the similar solution problem and an understanding
of the previous section is necessary to understand this section.

5.2 Semi-Discrete Method (Boundary Value)

equations into ordinary differential equations for solution on a mechanical differential analyzer. The
main feature of this method for two independent variables is that derivatives with respect to one of the

In the present case the derivatives in the flow direction are replaced with finite-differences and the
resulting equations are of the boundary-value type. This approach is also referred to as a differential-
difference scheme and the method of lines in the Russian literature which has been reviewed by Liskovets. o
The method was first applied to the boundary-layer equations by Leight®” and later by Manohar. 8¢ fThe
method has been developed further and applied to a variety of problems by Smith and colleagues. This work
is described in the review article by Jaffe and Smith.®

There have been three formulations of this procedure as follows:

(a) Point method - The governing equations are evaluated at the point (i+l) with the
E-derivative utilizing the independent variable at the point (i+l) and one or more

This approach was originated by Hartree and W’omersley55 as a technique to change partial differential

variables are replaced with finite-differences. The resulting equations are ordinary differential equations.
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values which have been determined previously. The derivative is expressed as

(3F/3E),,) = aF, ., +bF, +cF, o + «o (5-3)

where the coefficients a, b, c,--- depend on the choice of the distribution of the

grid system. The resulting ordinary differential equations will have F‘i o and Vi "

as the independent variables with all other quantities known. If coefficients a
and b are non-zero, the method will be first order in the € direction. With the
coefficients a, b, and ¢ non-zero, the method becomes second order.

(b) Mean method - The governing equations are evaluated at the point (i+%) where the
simplest formulation uses the trapezoidal rule which results in the following for
the derivative:

(F/38), , = (Fy,y - F,)/08 (5-ka)
All the other termms in the governing equation are evaluated, for example, as
1
Pt * o Wy ¥ (5-Lv)

where F can represent a derivative. The product terms can be written in two
forms with the following chosen:

(v aF/an)i% > Vo (ar"/aﬂ)i‘;5 (5-4c)

(¢) Least-Squares method - This method has been utilized to damp out initial
profile errors when the solution is started far downstream with a small
step-size. The €-derivative is approximated with a least-squares method
where, for example, a quadratic curve is used with four grid points.

When any of the above procedures are applied to the boundary layer Egqs. (5-1) or (5-2), the resulting
equations are two-point boundary-value, ordinary differential equations. Therefore, the equations are
nearly the same as the similar equations given in Egs. (4-1) and (4-2) and any of the solution techniques
described in Section L can be utilized. In the work of Smith and colleagues a shooting method was
employed to obtain the solution while a better approach would be to use the finite-difference method of
Section l.3. When the mean method formulation is utilized with the finite-difference method, the
resulting difference equations are the same as the Crank-Nicolson method which will be described subse-
quently in Section 5.4.4.

In order to improve the accuracy of the solution in the direction normal to the surface, Peters®® ©°
has used a Hermitian finite-difference procedure. The partial differential equations are reduced to a
two-point boundary-value problem with the use of the difference relation (5-3). The velocity F is
approximated between three grid points with the fourth-order polynomial

P = By (82 v 8) ¢ By - 48) « 3P, (8% - 0) + ob@ - #7) « 38200 - ) (5-5)

where t = (7 - 'ﬂ )/bT and t = 1, O, and -1 which gives F:j 7 FJ’ and Fj 1» respectively. The derivatives
of F become .

§% [2 J+l (2t +1) - ZFJ'G + 5 F (2t -1) + a1 - 3t ) + B(2t - l‘tB)J/An (5-6a)

2
3°F 2 e
W - ijﬂ -2F + Py, - 6ot + B(2 - 12t )]/AT] (5-6b)

The above derivatives, (5-3) and (5-6), and the function, (5-5), are used to evaluate the terms in the
momentum equation, (S5-1b). This finite-difference equation is evaluated at the three points t = 1,
t = 0, and t = -1 which gives the following three equations:

b Fypa Tl Fy Pl Py Yl @ T g Py G
Lyy Fyag * Lpp Fy * Lpg Fy g * Ly @+ Lo B = d, (5-7v)
I R VI R TR B T T TR e 81 )

where the coefficients have been given by Peters. These equations are used to eliminate the unknowns
o and B which give the tridiagomal equations

P * ByFy - GFy 2 Dy (5-8)
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which is solved with the procedure given in Appendix B. The dependent variable V is obtained from

Eq. (5-l1a) with the use of Simpson's integration formula. Since the governing equation, (S-1b), has
been linearized to obtain the linear difference Egs. (5-7), an iteration between the solution of Eq.
(5-8) and the solution for V is required. Since a Newton-Raphson linearization has not been used, the
convergence of the iteration is probably slow and one would question if Lth order accuracy has been
achieved. This procedure has also been used by Krause®® for solving boundary-layer flow, and he refers
to it as the "mehrsteller"-integration technique.

5.3 Semi-Discrete Method (Initial Value)

This method is the same as the previous method except the derivatives across the boundary
layer in this case are replaced with finite differences. The resulting equations will be first order
and of the initial value type. Steiger and Sepri“ used this method to solve the von Mises form of
the boundary-layer equations. The scheme was not successful as the resulting ordinary differential
equations are stiff and were not readily solved with a Runge-Kutta integration procedure. ILubard and
Schet?’® used the semi-discrete method and applied it to the boundary-layer equations in physical
coordinates. This paper indicates the method is very successful as the modified Runge-Kutta integration
scheme of Treanor © was used. When this procedure is applied to Eqs. (5-1), the resulting ordinary
differential equations become

oF
2 " . 2,300 01 (5-
20 Py ggd = - ¥y (P - By )/(280) - B(FG - 1) ¢ (Fy, - 28y o B AT e 2,3,00 021 (529)

where 1
- ! J oF = -
VJ Vl - (2§ K F) an (5-10)

The trapezoidal rule is used to evaluate the integral and with the boundary condition Fl = 0 the above
becomes

-1

3F 3F
” 21 P n o, e
Vj v1 5 (2§a—€-1 + Fj) AT / (2§h—§- Fn) (5-11)
a

Equation (S-11) is substituted into Eq. (5-9) to obtain a system of J-2 nonlinear, ordinary differential
equations of the form

(5-12)

;Ei f(§ F F aFn n= 23 md -1
L ’ ’ o F ’
- 17 SE—) S = maps, 0e]

This is not the standard form for integration subroutines but with additional algebra can be written
in the usual form without the derivative appearing on the right side of Eq. (5-12). Since these
equations are stiff, one of the recently developed computer programs, such as the Gear methoed,
should be used. These computer programs feature variable order methods, automatic step and error
control, and are capable of effectively solving stiff, ordinary differential equations.

5.4 Finite-Difference Methods

5.4.1 Explicit (Binder®®-schmidt®’) - As early as 1938 Prandtl®® proposed an explicit finite-
difference method for solving the boundary-layer equations. A new impetus was provided in 1955 when
Fligge-Lotz“® applied an explicit scheme to the Crocco form of the boundary-layer equations. A method
for handling the boundary-layer equations in physical coordinates was developed by Wu“® where the
proper form of the continuity equation was determined. When this scheme is applied to Egs. (5-1), the
resulting difference equation for the momentum equation is

2
2 Fy g (Fyp = F)y/08 + 0 By = Fy ) /(260) « BOFS 4 = 1) = (Fy,y - 2Fy + Fy ). /6T = 0 (5-13a)

and the continulity equation is

X 1 R
S iy = F)g/08 ¢+ & (Fypg = Fy)y 0/08 (V= Vg ), g/ + 5 (Fy + By )y = 0 (5-13b)

The unknown quantities in each equation are underlined where F's at (i+l) and various grid points j
across the layer are first determined from Eg. (5-13a). Then Eq. (5-13b) is used to determine the V's
at (i+1) and the grid points j. The boundary condition V. = O is used to obtain the solution of

1
Eg. (5-13b) and the boundary conditions F, = O and FJ = 1 are used to obtain the complete solution of
Fat (i+l).

1
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This method is second-order accurate in the direction across the boundary layer and first-order
accurate in the flow direction. Wu has given the following restriction on the step-size for a flat
plate incompressible flow as a sufficient condition for stability of the difference scheme:

Ax < (ay%u/2v) (5-1ha)
which becomes in the present coordinates
8€ < graT? (5-1kb)
He has also given the following restriction
by < 2v/v (5-15)

and this resembles the previous condition, (4-9), for the similar solutions.

5.4.2 DuFort-Frankel®® - This explicit method was first used by Raetz’® for solving the
three-dimensional boundary-layer equations. More recently it has been employed by Pletcher’' for
solving turbulent boundary layers. The advantage of this scheme over the usual explicit scheme is
that the DuFort-Frankel scheme is stable without restrictions on the step-sizes. However, there are
disadvantages which will be discussed after the method has been described. The present formulation
follows that of Pletcher, but he applied it to the boundary-layer equations in physical coordinates.
The momentum equation is evaluated at the point (i,j) as follows:

§i Fi,j (Fi+1 - Fi_l)j/AE + vi,j(Fjﬂ S Fj-l)i/(‘?An)

+ B(Fi 5D - ’(FJ+1 CFy )y - (B Fi_l)jj/zm2 =0 (5-16a)

while the continuity equation is evaluated at the point (i+l, j-%) and becomes

€
Ser [Py = Fuogdy * (Bpag = By )] /(208) + (V) <y 1), /80 + 3 (By + By y) ) = O (5-16b)

Again, the unknowns are underlined and after the F's have been obtained, the V's are then calculated.

In this method three levels of information in the E-direction have been used. The continuity equation
is first order in the E-direction and second order in the T-direction while the momentum equation has

the following truncation error:

(ag/80)? 3%F/2€% + 0(8E2) + o(aT?)

Since in boundary-layer theory 32F/a§2 is assumed zero, the first term in the truncation error should be
small. This unpleasant feature of the truncation error of the DuFort-Frankel method does not appear to
be a problem for the boundary-layer equations, but the step-sizes should be chosen to keep this term
small. The present formulation is first order in the E-direction and requires two initial profiles of
data to extend the solution downstream. In the work of Pletcher the initial profile of data is used
with an explicit-difference scheme to generate the second initial profile of data. Again, this limits
the method to a first-order scheme in the flow direction.

S.4.3 Implicit - The use of an implicit-difference sche;‘pe was first applied to the boundary-
layer equations in physical coordinates by Rouleau and Osterle.”® This scheme has the property of
being stable and is first order in the flow direction. The difference equations in this case are

25, 4(Fyy - Fi)j/Ag + g (Fyy - Fj-1)1+1/(2’m)

+ B[(FiﬂFi)j - 1] - (F‘,j+1 - oy o+ 1:"1_1)/AT12 =0 (5-17a)
and

1
28,0 (Fyy - Fi)j/Ag + (Vj - vj-l)iﬂ/lm ok ; (FJ + FJ_l) o (5-17v)

141 isl

The unknowns in the momentum equation, (5-17a), are Fj-l’ Fj, and Fj+1 at (1+1). Rouleau and Osterle

used a relaxation procedure to solve these simultaneous difference equations. The appropriate approach
is to use the tridiagonal solution technique described in Appendix B. After the F's have been obtained,
the continuity equation, (5-17b), is used to obtain the V's across the boundary layer.
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S.4.4 Crank-Nicolson’® - The initial application of this method was made by Kramer and
Lieberstein“® to the Crocco form of the boundary-layer equat1ons Later at about the same time
Brailoskaya and Chudov'® in Russia and Blottner and Fligge-Lotz “! in the United States developed this
approach for physical coordinates. In all of these methods the finite-difference equations are
written such that the unknowns appear as linear terms. The momentum equation, (5-1b), is written as

+ (Fj+1 =

2 P (g - F/0 vy e - FJ-1>1J/<M”)

+ B(F ) - [(F:j+1 - oF + FJ_1)1+1 *(Fyyy - 2Fy+ Fj_l)ij/(zmlg) =0 (5-18a)

1,5 Tie,3 -1
and the continuity equation, (5-la), becomes

Syag [(Faag = Fydy + By - Fi)j-ll/"g BURRARNVIES . l(Fiﬂ *R )y By v F1)3-1J = O (T
When Eq. (5-18a) is rearranged, it is the tridiagonal form

-A, F +BF, -C, F =D -1
3 Fg-1 ¥ BFy = Oy Fyn = D (5-19)
and the F's can be determined with the alogrithm described in Appendix B. Then BEy. (5-18b) is used

to solve for V. 3, 3 and the solution is started at the wall where Vi = 0. This method and the follow-
)

ing implicit schemes are stable without any restrictions on the step sizes.

If this method is to be a true Crank-Nicolson scheme, then the terms F and V cannot be
1+, ) 14,3

approximated at a previous grid point where they are known as is usually done. An iteration could be
performed where these terms are evaluated as follows:

1
Fiags =3 (Fra *Fy)y

with a similar expression for V. It will be shown later that this approach is not the best; the
convergence rate for this type of iteration procedure is slow. Although the Crank-Nicolson scheme
can be second-order accurate in the flow direction, most procedures in practice are first-order
accurate and iteration should not be performed with this solution technique.

The Crank-Nicolson scheme has been applied to the combined continuity-momentum, Eq. (5-2), by
Fussell and Hellums.’* The nonlinear terms are linearized (not Newton-Raphson) and an iteration
procedure is employed. Although the authors claim rapid convergence, the number of iterations is not
given and the same objections as discussed above also apply to this approach. Since a third-order
derivative appears in Eq. (5-2), the derivative is evaluated with five grid points and the resulting
implicit difference equations are of the penta-diagonal type. This requires a more complex solution
algorithm than the usual Crank-Nicolson schemes described previously.

Fannelop = has also solved the continuity-momentum equation, (5-2), with a Crank-Nicolson
scheme. In this approach Fq. (5-2) is rewritten as

2
2%(?%%-2—?§)-3—+f%%+5(1-?2) (5-20a)
and
U
£ = £,(€,0) +./r Fd7 (5-20b)
0

The Crank-Nicolson differences are used to replace the various terms in Bg. (5-20a) where the terms

are linearized such that the unknowns appear linearly. Equation (5-20b) is then used to determine

the f's across the boundary layer. Then an iteration procedure is used to reevaluate the terms that

were linearized such that all terms are centered properly. In this method the term (ar/ag)i+5 3 is
3 ]

initially set equal to (3f/3§), _ to start the iteration procedure. Again, this method has not
used Newton-Raphson linearizat}okjjand it is questiomable if one should iterate to obtain a second-
order scheme.

S.4.5 Box Scheme - The basic idea for this approach was presented in Section 4.3 for the
Keller midpoint scheme. The box scheme was developed by Keller 7® and has been applied to the boundary-
layer equations by Keller and Cebeci.'’ The governing equation, (5-2), is written as a system of
first-order equations by introducing two new unknowns, u and v, which give

/3T = u (5-21a)

/3N = v (5-21b)
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av/oM + £v + B(1 - w2) + 2§(—u % . %) =0 (5-21c)

The first two equations, (5-21a) and (5-21b), are evaluated at the point (i+1, j-%) which gives
1
(fJ - rj_l)iﬂ/zm 3 (uj + “3-1)1+1 (5-22a)

1
/BN =5 vy e (5-22b)

(“J - u,j-l)i+1 vj-l)i+1
Equation (5-21c) is evaluated at the center of the box which is the point (i+k, j-%). The various
terms in this equation are written in finite-difference form as follows:

/i = [eoy = vy )y + oy - IS (5-23a)

tv =2 [(rv)i+1 + (rv)i] N (5-23b)

B3 (B *8) (5-23¢0)

B’ = 1 [(rsuz)i+1 + (auz)ij (5-23d)

260 /38 = €y (uy) + )y (ugy uy), /08 (5-23¢)
26w 3/28 = € o (v g *+vy)yy (i - By)y 1/08 (5-231)

When the above relations, (5-23), are substituted into Eq. (5-21c), the nonlinear terms are
linearized with the Newton-Raphson relations, (L-1k), and terms at (j-%) are evaluated with Eq.
(4-15); the resulting difference equation is

f,-a,f, +bu, -b +e,v,-Cv,. =8 -2

25fy - ayTyer ¥ By%y - By¥yay * oYyt OyYya TS, (5-24)
This equation is the same form as Ig. (4-16), but the coefficientsvin the above equation are much
more complex than those in Eq. (L-16), and are given by Blottner.” FEquations (5-22) are also the

same as Egs. (L-12a) and (L-12b). Therefore, the present equations are the same as Egs. (L4-18)
except new relations must be introduced for the coefficients aj, aj, b;j’ bJ, cJ, and ¢.. The

J
solution then proceeds as described previously with the block-diagonal method.

As this method is implicit, it is stable like the Crank-Nicolson scheme without any restrictions
on the step-sizes.

5.4.6 Petukhov Method’® - This method was devised to avoid oscillations which can occur with
a Crank-Nicolson scheme for problems with large local gradients in the flow direction. To illustrate
this method consider the partial-differential equation which is expressed as

dF/2€ = L[F] (5-25a)
where

L(F) = ay 3%F/31° + o) 3F/30 + a,F +a (5-25b)

3

Two steps are taken to advance the solution from (i) to (i+1) and these two steps are repeated in
an iterative manner. The finite-difference equations for the two steps are

(Fy g, - Fi)/(%AQ) - UF ) - % o€ 3%F/3€2 + o(af?) (5-26a)

(Fy, - Fya)/(G00) = LR, ) - T a8 3F/2€% + o(ee?) (5-26b)

where

3%F/2€° = (F

1 - Ty +F/G0E) (5-26¢)

The ?uantities with a bar are evaluated from a previous iteration. Since the coefficients in
Eq. (5-25b) can depend on F, they would be evaluated with F from the previous iteration.
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To investigate the characteristics of this finite-difference scheme, Blottner'®

right side of Eq. (5-25) as

represented the

L[F] = (P - QF)/¢ (5-27)

where the quantities € and Q are assumed positive to make the equation inherently stable. The
Ti-derivatives have been neglected in Eg. (5-25b) and this results in a linear, ordinary-differential
equation for (5-25). The exact solution to this equation is

F(E,) = o' + P/Q (5-28)

where A = exp(-¢) and ¢ = 48Q/¢. The solutions of this equation with the Petukhov method is the
same as Eg. (5-28) except

A= Q-felarderid) (5-29)
while the Crank-Nicolson scheme gives

A= (1-20)/Q+30) (5-30)

For emall values of ¢, both the Petukhov and Crank-Nicolson methods are second-order accurate and
are a good approximation to the exact exponential solution. For large values of ¢, the Petukhov
method has the appropriate asymptotic behavior of A approaching zero while the Crank-Nicolson method
A approaches -1. This indicates why the Crank-Nicolson method might slowly damp-out an error with
an oscillating value.

The complete details of how the boundary-layer equations are written in finite-difference form
is not given by Petukhov. It is stated that two iterations of the equations for each step Af is
reasonabls. This requires six evaluations of L[F] for each step A% while the Crank-Nicolson scheme
described in Section 6 requires two evaluations. The Petukhov method requires more computer time
than the Crank-Nicolson scheme when the same step sizes are used, but should give more accurate
results for some problems.

S.4.7 Multi-level Method - With the semi-discrete method of the boundary-value type
(Section 5.2), it was indicated by Ey. (5-3) that the E-derivative could involve several levels of
values of the dependent variable in the marching direction. Davis and F'lx'igge-LotzB" have used a
three-level scheme where the derivative at (i+1) is expressed as

dF/3¢ = (3F

i+~ L

2

The Tl-derivatives are evaluated at (i+1) with central differences. Terms which should be evaluated
at (1+1) but would give a nonlinear difference equation, are approximated with extrapolated values
where the dependent variables at (i) and (i-1) are used.

This type of method cannot be used to start the solution away from the initial profiles or when
the E-derivative is discontinuous. The method is second-order accurate without iteration and no
stability problems were encountered. A second-order scheme must be used to start the solution in
order to obtain a second-order accurate solution downstream with a uniform grid 4%. Since the
starting method could be used to continue the solution downstream, the multi-level method loses
much of its appeal.

5.5 Integral-Control Volume Method

With this method, the governing equations are integrated over a small control volume and
the integral is evaluated by assuming linear or quadratic_ variation of the variables between the
grid points. This approach has been used by Shchennikov®! and Patankar and Spalding.® The control
volume is taken from i to i+l and from j-% to j+% which is the same as used by Patankar and Spalding.
With the linear variation, the first term in Eq. (5-1b) becomes

£ 1
10 Mgy 2 ;
26F 3F/3¢ = "R & anages om -3 A [, Fylya (g - By
SRR
$6(F g tFy (P = Fydy v (B v Ry (R = By, (8-32)

The other terms in the momentum and continuity equations can be evaluated in a similar manner. The
resulting momentum difference equation is nonlinear and is linearized with terms assumed known from
a previous iteration to obtain the usual tridiagonal system of Eqs. (5-19). In the two references,
the continuity equation has been eliminated with the use of von Mises variables or with the use of
Eq. (5-2). In the work of Patankar and Spalding, a linear variation of the variables is assumed and
the mathod is second-order accurate in the direction normal to the surface. Byrkin and Shehennikov®
have used quadratic variation of the variables and the method is fourth-order accurate in the T-
direction.
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In the paper by Shchennikov the boundary-layer equations are also written in divergence form and
then are evaluated with the gauss formula which gives for each conservation equation (k = 1,2,---)

R AN Y fy @ +§. by, )/ by = 0 (5-33)

where L is the contour of the elementary volume Ax - 4y. The quantities *xk and *y are the projection
= k
of the vector *k on the x and y axes, respectively. The integrals in (5-33) are evaluated with the

trapezoidal rule and the derivatives in the normal direction y are replaced with central differences.
The resulting difference equations are nonlinear and of second-order accuracy in both directions if the
complete equations are solved.

5.6 Other Methods

Although the intention has been to consider finite-difference methods for solving the boundary-
layer equations, it is worthwhile to at least mention some of the other useful methods. Dorodnitsyn®®
introduced the method of integral relations and applied it to the boundary-layer equations. Pallone®*
later used the strip-integral method. The general method of weighted residuals for solving the boundary-
layer equations has been thoroughly explored by Bethel®® and developed further by Bossel.®  In all of
these methods the partial-differential equations are reduced to a system of first-order ordinary
differential equations of the initial-value type.

Another ggproach which has proved very useful is the matrix-integral method developed by Kendall
and Bartlett.”’ The boundary-layer equation, (5-2), is used and is integrated across strips from j
to j+¥1. The dependent variable f is approximated with a spline function over the interval and
derivatives in the flow direction are replaced with finite-differences. The resulting system of non-
linear, equations are solved by Newton-Raphson iteration. The order of this method has not been
determined, and all of the numerical results indicate no stability limitations.

The finite-element method has recently been used by Baker®® and Oden and Wellford®® for solving

the boundary-layer equation. The usefulness of this approach for boundary-layer flow at this time is
an open question.

6. INCOMPRESSIBLE BOUNDARY-LAYER PROCEDURE

6.1 Davis Coupled Scheme

The purpose of this section is to present in detail a good numerical method for solving the
incompressible boundary-layer equations. The method chosen is a Crank-Nicolson scheme which has
coupling between the continuity and momentum equations. This method was suggested by Davis and used
by Werle and Bertke.”® An investigation of the accuracy of this scheme and several others has been
made by Blottner.’ ' Of the second-order accurate approaches, this method has simplicity and for
example, is faster than the Keller box scheme. In the future, the use of higher order methods could
prove to be better than the present scheme, but further work needs to be performed on this subject.

Rather than solving the incompressible equations, (5-1), the compressible form, (3-8), will be
used where 6 = 1 and £ = 1 for the present case. The momentum equation, (3-8b), is evaluated at
the location (i+%s,j) with the E-derivative written as

FOR/AE = 3 (Fyy + By (Fy,) - Fy) /a8 = 2 (2, - F2),/08 (6-1)

+1

The other terms in the equation are averaged between (i) and (i+#l1) and are at the position j which
glves

V 3/ = 3 (V 3F/3N),,, + 3 (V 3F/RN), (6-2a)
B(F2 - 0) = L [8(F% - ©)),,) + 3 (8(F® - 0)), (6-2b)
3 (¢ ar/an)/3M = 2 [a(x 3r/aM)/30], ) + 3 [a (e 3r/2m)/am) (6-2¢)

The nonlinear terms are linearized with the Newton-Raphson procedure where the required relations
are given in HKgs. (L-S). The derivatives are then evaluated with central differences which are

(/2T = Ry, = Fy )y /(207) (6-3a)

r - _ _ _ 2 _
[3(e ap/an)/Bn]i’J Caypy (Fyy = Fy) = gy (Fy - Fy_y)];/8M (6-3b)




The resulting difference equation for the momentum equation becomes

(-A4Fy g *ByFs - CFy )iy * @V 4= Dy g J = 2,3
where
Ao,y ™ (Bt VJ aV2), /2
Bia,y " (g * 4ya)y/2 * 8T (8, ¢ e )/Agj b
Cuaa,g = (g = Ty V2D /2
34,3 Ty - Ty, OVL

o
R W R TP LIS iy [“m * Ay oo BF:J_L 1,47

+ AT !‘%B)m . (933)1]’2 + 1 ot %(gi §) (Fo + F5,)),/08

vJ(FJﬂ

+

)/(ZATI) + BF l
R Ry

Quantities with a bar are evaluated from a previous iteration or are evaluated initiall
rather than (1+1). The continuity equation, (3-8a), is evaluated at the point (i+%, j-

the various terms are replaced with the following relations:

3F/3E = [(F

o - By ¢ (R ]/(ug)

141 ° ijl

av/am = I(v = Vit (- vj_l)iJ/(zATl)

he I(Fj *F)in Y Byt Fj-l)illh

The resulting difference relation is

v - cJ(F

Viel,5 = Ve, 341 5 *Fiadia Yy

where
1
ey =2 an (H + 8, a/8%)

- - l- + - -
dg 2 MM (E 51‘\;,2/[&)(1?J Fj-l)i (vj V3-1)1

A 32,300

B4
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(6-4)

(6-5a)

(6-5b)

(6-5¢)

(6-54)

(6-50)

at (1)
where

(6-6a)

(6-6b)

(6-6c)

(6-7)

The two difference equations, (6-L) and (6-7), are coupled and are readily solved with the modified
tridiagonal algorithm given in Appendix A. In the solution of these equations the boundary conditions

are required and are obtained from Eqs. (3-13) and (3-1L) which are expressed as

V1+1,1 =0, Fi+l,l = 0, and Fi*l,J =1

(6-8)

At € = 0, the partial-differential equations become the similar equation, (4-1), and provide the
necessary initial conditions for the solution along the surface. The coefficients for By. (6-L)

remain the same as those given by Eqs. (6-5) except for the following:
2 -
= i
By = (#y,5, + £53,)/2 + AT B F,

R e = =2
Dy =3 0|8 + V,F,,y - Fy /(2 + 8 F

J

(6-%a)

(6-9b)




[
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The subscripts (i+1) are neglected when the initial profiles are being obtained. These coefficients
are the same as given previously by Egs. (L4-8) with £ = 1. The continuity equation, (6-7), at € = O

has ey = AT/2 and dJ = 0 and is the same as Eg. (L-L).

6.2 Edge Conditions and Location

In order to obtain the boundary-layer solution, the inviscid flow velocity must be given,

and for a body of revolution Ty must be specified. With the velocity known, the pressure gradient

parameter B is determined from By. (3-9b) and the transformed coordinate € is obtained from Eq.
(3-5b). For example, for the Howarth problem of linearly retarded velocity field, the edge velocity
varies as

u /U, = (1 - %/L) (6-10)

where L is a reference length and U_ is the free-stream wvelocity. The transformed coordinate §
becomes the following when (pu)r = (bu)ug H'= 1/(PuU)_ and r§3 =1:

€= x(1 - x/(21)] (6-11)
The physical coordinate x in terms of £ is

x/L =1 -1 - 28/L (6-12)

The pressure gradient parameter becomes
B = (28/1)/[(28/L) - 1] (6-13)

For the Howarth problem analytical expressions can be determined for all of the above relations;
however, in general these quantities have to be determined numerically. In addition, the location
of the edge of the boundary layer must be specified. For many flows the edge can be taken at T_ = 6§
and constant along the surface. This approach is appropriate for the Howarth problem except nefir
separation where there is a rapid increase in the thickness of the boundary layer. If the boundary
layer is growing, grid points can be added as suggested by Blottner and Flugge-lotz.“! Patankar and
Spalding”" have also developed a technique which adds points to the grid across the boundary layer
as needed. The transformation (3-5a) has been modified by Beckwith and Bushnell %% to0 account for
the growth of turbulent boundary layers as follows:

v
0

e b (2§)n

In their work J = 0, A = 1/u2 and P = constant. For laminar flown = % while n = 0.8 to 1.0 for
turbulent flows. Another modification of the transformation has been utilized by Blottner, Johnson,

and E11is®® which is
u !'J y{—
NefR 5 | ou (6-15)
e )

In this case one has to specify how ﬂe varies along the surface which is not known in many cases

until the problem is solved. This same approach has been used by Kendall and Bartlett®’ except the
parameter Ue is determined as part of the solution. At a certain T the velocity is specified to

have a given value and ﬂe becomes an unknown in the problem. The approach of adding grid points for
turbulent boundary layers with the Keller box scheme is described by Keller and Cebeci.?®

6.3 Convergence of Iteration Procedure

Since several of the quantities in the coefficient relations (6-5) need to be evaluated
from a previous iteration, the required number of iterations of the difference equations, (6-4)
and (6-7), must be assessed. This has been investigated by Blottner,”’ and it has been shown that
only one iteration is necessary to achieve a second-order accurate difference scheme in the E-
direction. This is illustrated in Fig. 1 where the error of the velocity gradient at the wall is
shown as a function of the step size AE for the Howarth problem at € = 0.8. The method of deter-
mining the error will be described in the next section. For the smaller step sizes the slope is
approaching a value of two which 1t should have as a second-order accurate scheme.

The significant difference between the present scheme and other Crank-Nicolson schemes is the
convergence rate of the iteration process to the desired second-order accurate result. If the
momentum-difference equation is linearized and uncoupled from the continuity equation, the resulting
process converges very slowly. This type of scheme was described in Section S.4.L4 and is obtained
from Eq. (6-4) by assuming that Via j is known from a previous iteration or grid point. With one

b

iteration this method appears to be a first-order scheme as shown in Fig. 1. The results with
19 iterations show the proper second-order behavior with a slope of 2. Even with 9 iterations the
solution does not have second-order behavior.
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Figure 1. Accuracy of Crank-Nicolson scheme with various AE for Howarth problem. T

In both the uncoupled and coupled schemes, the results are second-order accurate in the T-
direction which is independent of the number of iterations performed.

6.4 Accuracy of Solutions

The only quantities that remain to be specified are the step-sizes Af and AT which will
determine the accuracy of the results. At present there are no boundary-layer codes which automatically
determine the step-sizes based on some desired accuracy of the results. The usual procedure is to
obtain solutions with several different step-sizes and if the solution does not change much, it is
then assumed that an adequate solution has been obtained. A better procedure has been developed by
Blottner where Richardson extrapolation is utilized to obtain an "exact" solution. For the present
Crank-Nicolson scheme, the method is second-order accurate in both coordinate directions and if W
represents the solution at some location, then the following relation exlsts:

W+ asf? + bATE +... (6-16)

where a and b are constants, wc is the computed solution, and W, is the exact solution when the
step-sizes go to zero. If solutions are obtained with Al = con§tant and AE = AE and Af = %AE | then

Eq. (6-16) is used to obtain the "exact" solution with A — O but with a finite galue of A7 uhgch is

W

2 il J. 1
AE~0 " WE + bAT" = WC(EAQO) ¥ 3 [WC(ELKO) - WC(A§O)J *eee (6-17)

where WC(A§O) is the solution obtained with step-size 4f,. The "exact" solution WA§-0 is used to
Judge the accuracy of the solutions with step-size A§0 as follows:

% Error of W(A§O) “ IWC(AEO) - wA§-‘O]/wA§-O (6-18)

A similar equation is used for solutions with other step-sizes. At least three different step-sizes
should be used to be sure the error is behaving as indicated in Eq. (6-16). FHguations similar to
(6-17) and (6-18) are used to evaluate the accuracy of the solution with warious All.

The accuracy of the wall velocity gradient for various step-sizes A% has already been considered
in Fig. 1. With the Davis coupled scheme, the wall velocity gradient for the Howarth problem has an
error less than 1% at € = 0.8 (separation is at § = 0.090) with 8 steps taken along the surface. The
effect of All on the accuracy of the wall velocity gradient is shown in Fig. 2. As the solution
proceeds downstream, more steps are required across the boundary layer if the accuracy is to be
maintained. These results indicate that approximately 50 intervals across the flow are required in
order to have 1% accuracy for the wall velocity gradient.

The modified tridiagonal algorithm requires approximately twice as much computer time as the
standard tridiagonal algorithm. However, the uncoupled scheme requires many iterations and its total
computer time is larger than the coupled scheme when a second-order accurate method is desired. If
only a first-order scheme is adequate, the uncoupled scheme requires less overall computer time. When
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the difference in computer times for the methods in Fig. 1 is taken into account, there is a
considerable saving in computer time if a second-order method is used rather than a first-order
method when accurate wall shear stress results (= 1%) are desired. If very accurate results are
desired, it would probably be advantageous to go to even a higher order method.
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Figure 2. Accuracy of Crank-Nicolson scheme with various AT for Howarth problem.

7. OOMPRESSIBLE, BOUNDARY-LAYER PROCEDURE

The Davis coupled version of the Crank-Nicolson scheme is now extended to the compressible boundary
layers, Eqs. (3-8), for two-dimensional and axisymmetric steady flows. In Section 6 the technique was
developed for the compressible continuity and x-momentum equations. Therefore, the energy equation
must now be written in finite-difference form. Although there is coupling between the x-momentum and
energy e%uations, these equations will be handled in an uncoupled manner. This has been shown by
Blottner to be a reasonable approach for the problems that were investigated.

The energy equations, (3-8¢), is evaluated at the point (i#s,)) where the &-derivative is written
as

-8 )J/A§ (7-1)

The other terms are first averaged between (i) and (i+l) as done in Egs. (6-2) and then the nonlinear
terms are linearized with the Newton-Raphson procedure, (L4-5). The derivatives are evaluated with
central difference relation as given by Eqs. (6-3). The energy equation becomes the following finite-
difference equation:

28F 36/3¢ = [(£F),,; + (), [ (9,
3

(-As8, ) + B8, = GO 0)ig = Dy J=2,3,000 -1 (7-2)
where

STRR OV g 12), /2

Bia,; - (zjdg + ,zj_,i)iq/(zpr) + an? [(gp)vl + (&F), j/Ag

Cpon,g ™ (bgag®e - Ty 8V2) 72
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= ‘ 2 2 '
Dj = Ai,Jei,j-l + Ci,jei,:jﬂ +t af(JF/3M) o @l (3F/30) i‘ AT/2
J

| ) . ;
= ei’j I(:,J% lj_;é)i/(QPr) - a8 I(E.F)i+1 (SF)iJj/AE‘

The initial profile of ® at § = O is obtained from E‘q (7-2) with the coefficients simplified by
setting all terms at (i) to zero and setting £ = 0. The finite-difference equations, (7-2),
are of the tridiagonal form and are solved wit?i the ’Hiomas algorithm given in Appendix B. The boundary
conditions have been given by Egs. (3-13) and (3-1L) which are expressed as

8 = Bt AT (7-3a)

eJ =5 (7'3b)

In the incompressible case £ = 1, while for campressible flow Eq. (3-9a) is used to determine the
value of £. If (Pu)r = (Pu), and a linear viscosity law (p = CT) is used, then £ becomes with the use

of the equation of state, (2-10), the following:
L=p /p, (7-4)

The pressure across the boundary layer is assumed constant. The parameter @ is also required and is
defined by Eq. (3-9c) which gives

o« = (v-1) ¥ (u/u)?/(T /1) (7-5)

In order to evaluate Eqs. (7-4) and (7-5) the inviscid flow quantities at the edge of the boundary
layer are required. The classical approach is followed where it is assumed that the inviscid flow
along the surface provides the boundary-layer edge conditions. If the inviscid flow velocity at the
surface is assumed known, then the isentropic flow relations for a perfect gas give

T /T, =1 +2(v-1)¥ (7-6)
N
py/pe = (T,/T)%? (7-7)
If the inviscid surface pressure is known, then the velocity is determined from
; X1 )1/2
- Yy -2 ,2
u /U, ll + {1 - (p/Pg) (—-——2 M,,,)’ (7-8)

and the temperature ratio is determined from Eq. (7-6). In either case, with the velocity or the
pressure specified along the surface; the parameters £ and @ can be determined from Egs. (7-4)
and (7-5), respectively.

For the compressible case the wall boundary conditions remain the same except an additional
condition must be provided for the energy equation. As Eq. (7-3a) indicates, one possible condition
is to specify the wall temperature Tw.

The convergence of the it.eratigln procedure at each step and the accuracy of the foregoing scheme
has been investigated by Hlottner. " The linearly retarded edge velocity problem was solved for the
case with M_ = L, TW = T,, and T] = 8 which has also been solved by Fitzhugh. The results show that

the finite-difference scheme is second-order accurate with the energy equation uncoupled and with one
iteration at each £-step. The procedure described in Section 6.4 has been utilized to judge the
accuracy of this problem. The accuracy of the wall velocity gradient at § = 0.1 for various Af with

ATl = 0.2 and various AT with 4§ = 0.0025 is given in Fig. 3. The curves have a slope of approximately
2 which shows that the method is second-order accurate. These results were obtained with one iteration
at each E-step along the surface. The results with the present scheme are compared with other numerical
solutions which are given by Fitzhugh in Fig. L. There are significant differences between the results
which should be due to truncation errors as a result of too large step-sizes being used. The solution
of Blottner (labeled present study) are "exact" as far as the figure is concerned. The linearly
retarded free-stream velocity problem has also been investigated by Werle and Senechal®* and their
results show similar differences when compared to the solutions of Fitzhugh. The present finite-
difference scheme has been used to solve a problem investigated by Werle and Senechal and the results
are in excellent agreement except near separation where there appears to be a slight difference. The
accuracy of the present finite-difference scheme results for the skin friction parameters are tabulated
below:
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£ ¢ Error of cfﬁZ
0 0.042
0.004 0.059
0.008 0.077
0.012 0.097
0.016 0.13
0.020 0.17
0.024 0.25
0.028 0.40
0.032 0.86
0.034 1.72
0.036 26.0

The results show that the accuracy has deteriorated significantly near the separation point.
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Figure 3. Accuracy of the Finite-Difference procedure for the
linearly retarded flow at M_ = L and Tw = T,
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8. TURBULENT BOUNDARY-LAYER FLOWS

It would appear difficult to describe computational techniques for solving turbulent flows when
the governing equations are not a unique system. Even the type of the partial differential equations
can change depending on the closure model used to determine the Reynolds stresses. The turbulent
energy equation approach by Bradshaw, Ferriss, and Atwell®® results in a system of hyperbolic equations.
The method of characteristics was used to obtain the numerical solution. Nash’® has used an explicit
finite-difference scheme for the same type of turbulence model. As the governing equations are not
appropriate near a surface, an inner solution of the viscous sublayer is matched to the outer numerical
solution in both of these papers. All of the other closure models as described below result in parabolic
partial-differential equations. In the imitial work on the prediction of turbulent boundary layers the
mean-velocity-field closure has been employed by Mellor,®’ Patankar and Spalding,® and Smith and Cebeci.®®
In the first of these papers the solution is obtained completely across the boundary layer. Mellor used
the Hartree-Womersley semi-discrete method for solving the governing equations where the ordinary
differential equations are solved across the layer with a Runge-Kutta integration procedure. Patankar
and Spalding used a Crank-Nicolson type of finite-difference scheme which is not applied to the wall.
A wall-function is introduced that gives the flow quantities at the wall as a function of quantities
at the first grid point away from the wall. Smith and Cebeci first use a lLevy-lees transformation of
the governing equations and then use an implicit finite-difference scheme to obtain the solution across
the complete boundary layer. Due to the large gradients that occur near the surface, a variable grid
system is employed. A more complex closure approach with tl;ne mean turbulent energy closure scheme was
initially investigated by Glushko,“ Beckwith and Bushnell,““ and Mellor and Herr:i.ng.wl This approach
introduces a transport equation for the turbulent kinetic energy and for boundary-layer flows this is a
parabolic partial differential equation. An even more complex closure approach is the mean Reynolds
stress model which results in a system of equations for the Reynolds stresses. Donaldson and Rosenbaun® “*
have used this approach with the most recent work being reported by Varma, et.al.’® In this last paper
the governing equations consist of nine coupled parabolic partial-differential equations. The numerical
gsolution is obtained with a forward-time and centered-space, fully implicit, finite-difference scheme.

There are many other papers concerned with the numerical solution of the turbulent boundary-layer
equations. With the exception of the work of Bradshaw et. al. and Nash and the distribution function
approaches, the turbulent boundary-layer equations are a system of parabolic partial-differential
equations for the various closure models. The number of equations depends on the closure model employed.
Therefore, the numerical techniques developed for laminar flows are also appropriate for turbulent
flows. However, there is one significant difference which has been indicated above and has been
illustrated by Blottner'°* and is shown in Fig. 5. For a turbulent boundary-layer flow, an excessive
number of grid points are required normal to the surface to obtain 1% accuracy of the wall shear stress,
T.,, if a2 uniform grid spacing is used. The introduction of the following nonuniform grid has been used

cd
by Smith and Cebeci:®®

A'ﬁj% =K AT]J_;E J = 2’3’“':('1 - 1) (8'1)
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where nj+1 = 'ﬂJ " Anj% and Tll = 0. This grid spacing has been used by several authors with a slowly

varying grid (K =~ 1.02) which requires several hundred intervals across the boundary layer. The Keller
box scheme has been used by Keller and Cebeci’® with a rapidly varying grid (K = 1.82) with several
tens of intervals across the boundary lager. A transformation of the independent variable can also be
introduced as has been done by Roberts.'°® Another approach has been used by Davis'®® where the

Crocco form of the boundary-layer equations are used. The large gradients in the dependent variables
near the surface are eliminated which allows a uniform grid system to be applied. The problems with
this transformation for the laminar boundary layer have been discussed in Section 3.

Following the format of the previous sections, we will now illustrate how the Crank-Nicolson
scheme can be applied to a turbulent boundary layer flow. The variable grid scheme of Blottner'®”
will be applied to the incompressible form of the equations where a mean-velocity-field closure model
is used. The eddy-viscosity formulation of Keller and Cebeci®” has been used in the paper by Blottner
and will be used for any results presented in this section. The governing equations are given by
(3-8) with 8 = 1 and £ = 1 + ¢/v where € is the eddy viscosity.

The variable grid scheme is interpreted in terms of a coordinate stretching approach. A new
coordinate N is introduced where a uniform interval &N is used and 1s related to the original coordinate
T by a relation of the form

N = (N) (8-2)

The Tderivatives are transformed into the new coordinate system and central differences are employed
to obtain

), - /F). - G0 - v [ancavan, ] « oqa?) (8-3a)
(Sﬁ)J (FN W)J SN B ” Jl
and
3 [, w\ _ 3 [, aw/an) jan dTl-l any (g - ¥ /dn . ’"-1] al
(e ’a"ﬁ)J "= (‘m/a)d &), (ﬁ)J [(‘/m)m("wrl)' (x a)d_%("—alr"—) + oar) (8-3b)
The present approach replaces the coordinate derivatives with finite-differences to obtain
Ny = (@van, = (N, - N, )/(e8) + o(av®) (8-La)
’ - - - & 2 "
Nygy = (@VA) 5 = (T - Ty )/AN + o(aN%) (8-Lb)

When these relations (8-L) are employed in Eqs. (8-3), the resulting difference equations for the
derivatives are

(NVNUJ'(W

P
s = Wy /(N = My p) + O(aN®) (8-5a)

loce awanpenl, = 2o, g 00y - W/ = 1) - 200y < < Dl <)+ o)
(8-b)

The above derivatives are second-order accurate in terms of AN when a relation of the form of Eq. (8-2)
i8 used to specify the grid points. For example, the grid spacing with the relation of Smith and
Cebeci as given in Fy. (8-1) becomes

N,/&N 1/aN
hy ™ TIJ(KJ %y 1)/(x 2 1) §21,2,3,5+d (8-6)

where NJ = (J - 1)AN and NJ = 1. The values of K and ANO are two parameters which are chosen to give

the desired grid spacing.
The finite-difference equation for the momentum equation, (3-8b), is obtained as described in

Section 6.1 except the derivatives (6-3) are replaced with the derivatives (8-5). The resulting
difference equation is

(-A4Fy ) * BSF, - CFyading * @)1 "Dy g 372,300,901 (8-7)
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where

Ain,g © [(Un’)J-% : VJAN/ZL L (S
B g = Buag g * AN (5 ¢ 6 ) Fyy /0 (8-8b)
Ciup g [(1/11'):],,32 - VJAN/2]i+1/2 (8-8c)
Bon,g = B, * (igfya - Byt 0 "JFM)i R

- P (g - 8L )FD,) B, /(208) (8-64)
PR (CAR N A 0NN I / 2+ a8 F,), (8-e)
By, * (Wyag,y + 5 ACIRLG G+ B ) (8-8¢)
fp g ® Frpy = Fy ) B0 (8-8¢)

Where V or F have a subscript (1), the bar on these quantities is neglected as these quantities

are knomn. If 7 = 1 and 8, = 1 at all grid points, then the coefficients (8-8) are identical to

the ones previdusly presented in Eqs. (6-5) for the incompressible, laminar boundary layer. At

E = 0, the coefficients (8-8) remain the same with the subscripts (i+l) ignored, except the following
two coefficients become:

Biuy,j " §J (8-9a)
Diy,; = D (8-9b)

The difference equation for the continuity equation, (3-8a), is the same as previously given in
Eq. (6-7) except Al = Aﬂj_g = (T]j - nj_l) in the coefficients for ey and dj' Also, it should be

noticed that Af which appears in the coefficients (8-8) can change as the solution steps along the
surface. The governing equations, (8-7) and (6-7), for the incompressible, turbulent boundary layer
are solved as described in Section 6.1.

Although it has been implied that the nonlinear difference equations have been linearized with
the Newton-Raphson method, this is not completely true. The eddy viscosity € is a function of the
velocity F and its gradient, but in the linearization procedure ¢ is treated as a known quantity.
Therefore, the eddy viscosity is evaluated from the solution at the previous step or iteration. The
convergence properties of the iteration procedure and the accuracy of the variable grid scheme have
been investigated by Blottner.*°” The laminar-to-turbulent flow along a flat plate (turbulence model
included everywhere except at leading edge) was obtained where the edge Reynolds number, Rex = uex/u,

at the last step is 1.88 x 10°. The solution was obtained with various number of iterations at each
step and different number of intervals along and across the boundary layer. The grid spacing across
the layer is specified by Eq. (8-6) with X = 1.82, AN, = 0.1 and T = 24.2538. The wall skin friction

parameter C, = J2/¢ (bF/b'ﬂ)w is used to judge the accuracy and behavior of the results. The accuracy

of the solution is illustrated in Fig. 6 for various number of intervals across the boundary layer.
These solutions were obtained with 15 intervals along the flat plate and the skin friction error is
for the last step. The results presented were obtained with 3 iterations while soclutions with only
one iteration are nearly the same and alsc have second-order behavior. Also shown in Fig. 6 is the
accuracy of the Keller box scheme for the same problem. The variable grid scheme approach has about
the same accuracy in the T-direction as the Keller box scheme for this example. The accuracy of the
variable grid scheme for various number of intervals in the E-direction and 80 intervals across the
boundary layer is illustrated in Fig. 7. With one iteration at each step in £, the method shows
second-order behavior except when 15 intervals are used. With 19 iterations, second-order behavior is
obtained for all intervals investigated. However, even with this many iterations the solutions have
not converged (difference in the dependent variables between successive iterations is greater than 107°
at a point half-way across the layer). For the laminar flow case, the solution converges with L or 5
iterations. For the turbulent case, the slow convergence is attributed to the lack of complete
Newton-Raphson linearization. However, the present linearization is adequate and one iteration at
each € step is sufficient.
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The use of several grid spacing relations (8-2) has been investigated by Blottner*“* for turbulent
boundary layers. The method of Smith and Cebeci works as well as any of those considered. An optimal
node distribution technique has been developed by Denny and landis*®® for two-point boundary-value
problems. The grid point locations are adjusted in an iterative process such that the local truncation
errors of the finite-difference equation are minimized. This or a similar type procedure might be
useful to extend to the partial differential equations governing the turbulent boundary layer.

Another problem that generally does not occur with laminar boundary-layer flows, is the change in
thickness of the turbulent boundary layer in the T coordinate system. This is illustrated for the
laminar-to-turbulent flow along a flat plate problem in Fig. 8. The value of 7 at the location where
F = 0.99 is shown at various distances or Re 's along the plate. Cebeci and Smith 199 state that for

R.e}c = 10°, the T at the edge of the boundary layer has a value of 150. Therefore, some method must

be used to take these large changes in thicknesses into account. Several approaches that have been
utilized are discussed in Section 6.2.
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Figure 5. Laminar and turbulent velocity profiles.
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9. INSTEADY BOUNDARY-IAYER FLOWS

Rather than consider the general three-dimensional, unsteady problem defined by Egqs. (2-4) to (2-8),
the present discussion will be limited to the two-dimensional, incompressible boundary-layer equations.
Since the techniques developed for steady flows can be extended to the unsteady case, the numerical
techniques can readily be demonstrated with these simplified governing equations. Many of the techniques
developed for steady compressible, turbulent, or three-dimensional boundary layers have been applied to
the unsteady case.

With Eqs. (3-1) employed, b/bx3 =0, w=0, P = constant, and j = O; the governing FEgs. (2-4)
and (2-5) become

du/3x + av/dy = 0 (9-1a)
d/3t +u dw/ax + v d/dy = - (3p/ax)/P + v Fw/Ry’ (9-1b)
The boundary conditions for the surface and for the outer edge of the boundary layer are

y=0, u=v=0 (9-2a)

y==, u=u/lxt) (9-2b)

If there is no reverse flow, the solution of Eqs. (9-1) can be obtained for various x's with t
held constant or for various t's with x held constant. However, to proceed with such a solution,
initial conditions are required at the initial time, t,, for the variables everywhere and at some

upstream location, Xy the variables are specified for later times. This is expressed as follows

where the solution is obtained from position X to x and from time ti to tf:




3-30

For t = t, and x, < x < Xy, u = ui(x,y) (9-3a)

For x = x

o and ti st s t'f’ u = uo(t,y) (9-3b)

The velocity vi(x,y) is obtained from the continuity equation, (9-la), while vo(t,y) is obtained from

a compatibility equation which results from eliminating du/3x from the governing equations, (9-1).

The specification of the initial conditions can be a problem unless a steady, boundary-layer solution
can be used at ti and an unsteady similar solution at Xy For the impulsive motion of a body, the
boundary-layer thickness is initially zero and a numerical problem is introduced if physical variables
are used. Some of the transformations employed will be considered subsequently.

Much of the work on unsteady boundary layers has been concerned with incompressible, two-dimensional
flows. The initial numerical techniques were applied to the governing equations in physical coordinates.
The first use of a finite-difference scheme for solving the unsteady boundary-layer equations was made
by Paskonov and Rabin'kina.'*® The compressible form of the governing equations were investigated
where the Crank-Nicolson scheme of Paskonov'° for the steady equations was extended to the unsteady
equations. The flow variables are assumed known at (n) and are solved for at (n+l) with At = tR*l - ¢n
and the subscript n indicating the time coordinate location. The derivatives for the momentum equation
are evaluated at (n+s, i+%,J) as follows with a uniform grid:

/et = (@7 - ), /eee) BT - ), /(en) (9-L)

i+1,)
/ox = (uy, - uy)]7/(20) ¢ (g, - wy)}/(20x) (9-5)

With W representing either ou/3y or Bzu/byz, these derivatives are written as

1 +1 1N
LR AR AR WL WY e

where central differences are used to evaluate the T-derivatives as follows:

(qu/ay)] ;= (uy,y - vy )i/(28) (9-7)

(Pu/ay?)] 4= (uy,y - 20y +uy ) /0P (9-8)

When the above derivatives are substitvted in the momentum equation, (9-1b), the resulting difference
equation will be of the fom

B.F o gt (9-10)

(-AFs1 * ByFy - GFyadig = Dia g

3

The coefficient u in the momentum equation, (9-1b), is evaluated with Eq. (9-6) wllire W represents

u. Initially, it is assumed that the coefficient is known which requires that W;‘ﬂ j be set to w!'11+1 5
s 3

Then an iteration is performed with this term evaluated from the previous iteration. As the Newton-
Raphson iteration is not used, the convergence is probably slow and a second-order accurate scheme is
difficult to obtain with this approach. The coefficient v is evaluated at i+k with the use of the
continuity equation.

The continuity equation, (9-la), is evaluated at the point (n+s, i+, j-%) with the same approach
used in the Crank-Nicolson scheme. The derivatives are written as

o +1 +1
2u/2x + & [(wan)TT + (qwa)] + (awe)] + (au/ax)’j‘_l]wE (9-11a)

n n
(bu./ax)i%,j = (ui+1 -y J./Ax
and

/2y = (vy = v, )3/ (0y) + (v - vy )]/ (2ty) (9-110)

When these relations&re substituted into the continuity equation, the resulting relation can be
used to determine v?dﬁ 5 across the boundary layer after Eq. (9-10) has been solved. An iteration
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procedure is used to improve the accuracy of the solution of the momentum and continuity difference
equations.

This type of Crank-Nicolson scheme has also been independently developed by Dwyerlll and Hall.'!®
In this last paper it is stated that von Neuman's criterion for numerical stability indicates that the
method is unconditionally stable. It needs to be added that the velocitg u must be positive. An
explicit finite-difference scheme was investigated by Farne and Arpaci’'® which is an extension of the
two-dimensional explicit scheme (Section 5.4.1). This is a first-order method and the step-size At
is restricted in size to insure numerical stability. Oleinik'!* proposed this explicit scheme also
and in addition, she proposed a first-order accurate implicit scheme. This scheme is an extension of
the two-dimensional implicit scheme (Section 5.4.3) and is a first-order accurate method. The unsteady
boundary layer at the stagnation point of an infinite plane wall with impulsively started external flow
was investigated by Katagiri.''® This flow is an unsteady, one-dimensional (space) problem and was
solved with the difference-differential method which was described in Section 5.2. The Keller box
scheme (Section 5.4.5) has been extended to the unsteady equations by Phillips and Ackerberg.118
Newton-Raphson iterations are used to solve the nonlinear finite-difference equations, and this method
is second-order accurate. The solution procedure with the block tridiagonal method as described in
Appendix B is not used, but the difference equations are combined such that the modified tridiagonal
method of Appendix A is used. This type of modification of the Keller box scheme for steady, two-
dimensional flow has been made by Blottner.” A change of the box scheme is introduced by Phillips
and Ackerberg when there is backflow which allows stable solutions to be obtained. Unsteady flows
with reverse flow have also been considered by Telionis, Tsahalis and Werle.''” The zig-zag
derivative introduced by Krause''® for three-dimensional steady boundary layers was used to evaluate
the following derivative at (n#s, i, J)

/2 = (uy - uy ) N/ (2ex) + (uyy - uy)i/(200) (9-12)

The other derivatives in the governing equations are evaluated as follows:

awat = (. u“)i, §/ (9-13a)

+]1
W (WP w")i,J/z (9-13b)

where W represents the T-derivatives which are evaluated with Egs. (9-7) and (9-8). With reverse
flow, the use of the above procedure requires downstream boundary conditions or one mesh point in the
x~-direction is lost with each step in time.

Other numerical solution techniques have been applied to the unsteady boundary-layer equations.
Bartlett, Anderson, and Kendall''® have used the integral matrix method for solving the governing
equations for a gas in chemical equilibrium with the flow either laminar or turbulent. Koob and
Abbott'“® have used the method of welghted residuals and the method of lines to solve the time-
dependent, two-dimensional incompressible equations.

The solution of unsteady turbulent flows have been investigated by Patel and Nash®® with an
explicit finite-difference scheme. This is a modification of a method used previously for steady,
three-dimensional flows. Cebeci and Keller'“® have used the box scheme (Section 5.4.5) to solve the
unsteady turbulent flow on an infinite plate which results in a problem with one space dimension.

The_solution of unsteady and three-dimensional boundary-layer flows has been investigated by
Dwyer.123 Two implicit, first-order accurate finite-difference schemes have been used to obtain the
results. The significant difficulties encountered in this investigation were the determination of
the initial conditions and how to handle reverse flow.

Several types of transformations are used with the unsteady boundary-layer equations. For impulsive
flow toward an infinite plane wall, Katagiri introduces the new independent variables.

T =2 Jat (9-1La)
M= y/(2 At) (9-14b)

where the velocity at the edge of the boundary layer for t >0 is u_ = ax. At T = O, the transformed
govermning equation becomes an ordinary differential equation in 1| which can be solved to provide the
initial conditions for the problem. The physical boundary layer has zero thickness at T = 0, but in the
transformed plane a finite thickness is obtained. This procedure gives a result similar to the
Levy-lees transformation for the steady flow over a semi-infinite flat plate at the leading edge.

For the incompressible, two-dimensional boundary-layer equations with an unsteady exterior flow,
the following type of transformations have been used with the authors indicated:
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§(x) = x
x,y,t) = ue(x,t)/(va) ¥ Dwyer (9-15)

T=1

E(x,t) =f( u (x,t) dx
0

Hx,y,t) = [ue(x,t)/Jz—g)]y Telionis, et.al. (9-16)

T=1t

x
E(x) =] u (x) dx
b e

m

W(x,y) =

u, (x)/ NE } y Tsahalis & Telionis®* (9-17)
m

T=1t

r gives the following reasons for using the transformation (9-15) before the numerical solution:
1()36 possible leading edge singularities along the plane x = O are removed; (2) equations to determine
the initial conditions along £ = O may be obtained by taking the limit € - 0; (3) the boundary-layer
thickness is very nearly constant in terms of the transformed coordinate T; and (4) the derivatives
of the independent variables are stretched so that high accuracy may be obtained with relatively large
step-sizes. The transformation of Telionis, et.al. (9-16) was used for calculating transient flows
while the transformation (9-17) was used for oscillatory flows. For the unsteady fomm of the
compressible governing equations, (3-2) to (3-L), Bartlett, et. al. used a modified Levy-lees coordinate
system. There have been several transformations utilized with the unsteady equations, but there does
not appear to be any clear choice of the one to use. Further investigation of the appropriate trans-
formations to use needs to be performed.

Although the box scheme is an adequate finite-difference approach for solving the unsteady boundary-
layer equations, the Crank-Nicolson scheme as used by Paskonov and Rabin'kina is preferred. The
appropriate formulation of this scheme with Newton-Raphson linearization has not been done, but is an
easy extension of the scheme described in Section 6.1. Before this is done, the transformed form of
the governing equations needs to be decided.

10. THREE~-DIMENSIONAL BOUNDARY-LAYER FLOWS
10.1 Introduction

Solution techniques for the governing equations, (2-4) to (2-11), for steady flow will be
considered in this section. A general method for solving three-dimensional flows is not available.
At present, a limited number of flow problems have been solved with special techniques for each problem.
For two-dimensional and axisymmetric boundary-layer flows, very general codes have been developed. For
two-dimensional flows these codes are independent of the body geometry while for axisymmetric bodies
the radius must be specified and for both cases one coordinate system is used. For three-dimensional
flows, there is no unique coordinate system and many different ones have been employed. With a
coordinate system chosen, the geometry of the body or the inviscid streamlines is necessary to determine
the metric coefficients. The inviscid flow for three-dimensional flows are not readily available either
from analytical or numerical results. These results when available are a function of two independent
variables and this introduces significantly more complexity than occurs in the two-dimensional case.

As a result of the difficulties of the solution of the complete three-dimensional problem, many
authors have investigated approximate techniques or special cases. The small crossflow approximation
of Hayes'® has been developed by Fannelop'“® by means of a systematic perturbation procedure. Although
such procedures are important, the present concern is with "exact" solutions of the governing equations
with mumerical techniques. The simplest exact solution of the three-dimensional boundary-layer equations
is the flow at a stagnation point as considered by Howarth.*® The governing equations are reduced to
ordinary, differential equations and can be solved with techniques developed for similar solutions.
There are three special flows that reduce to the two-dimensional or axisymmetric governing equations

(slightly changed) plus the x. -momentum equation where there are only two independent variables, Xy and

y. The first case is the flow over a yawed infinite cylinder where for laminar flow the x3-momentum
equation is uncoupled. This problem has been investigated by Reshotko and Beckwith'“” when the external

flow is of the Fallmer-Skan type and the governing equations are reduced to similar form. For turbulent
flows, the x,-momentum equation is coupled to the two-dimensional equations, and the non-similar
numerical soiution has been obtained by Cebeci.'*® The second example is the flow over a spinning
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body of revolution at zero incidence. The governing equations consist of the axisymmetric equations
which are slightly modified plus the x,-momentum equation. The finite-difference solution of this

problem for incompressible flow has been obtained by Koh and Price'*® while Muraca'®° considered the
compressible case. The third case is the flow in the plane of symmetry. Again, a system of governing
equations is obtained which involves two space dimensions. The solution of these equations has
generally used exterior flows which give similar solutions. The flow on a sharp cone at incidence was
first considered by Moore'“! and the more recent results are given by Wu and Libby.'®“ Nonsimilar
symmetry-plane solutions with finite-differences have been obtained by Seliverstov’®® on a spherical
segment and by ‘rllang““r on a ellipsoid at incidence in incompressible flow. Another special case is

the supersonic flow over a cone at incidence where it was shown by Moore'®® that a similar transformation
in the x direction exists of the form T ~ y/V;i. The governing equations become partial differential

equations involving the independent variables 7 and x,. This two-dimensional problem for circular cones

was solved with a finite-difference scheme initially by Cooke®® and Vvedenskaya'®” and later by Dwyer'®®
and Boericke.'®® The boundary layer on elliptic cones in supersonic flow has been solved numerically

by Bashkin*® for the case of zerc incidence and by McGowan and Davis**' for the case with angle of
attack. Although the foregoing solutions result from simplified forms of the three-dimensional
equations, some of these results are a necessary part of the complete solution. The stagnation point
and the similar cone solutions provide initial conditions for the complete solution over blunt and

sharp bodies, respectively. The plane of symmetry results can be used as boundary conditions.

The properties of the three-dimensional boundary-layer equations were first investigated by
Raetz'*® where he introduced the "influence principle." The influence of the solution at any point
is transferred to other points first by conduction along the straight line paralleling the y-axis and
passing through that point and then by convection downstream along all streamlines through that line.
This zone of influence is the region bounded by the body surface and the edge of the boundary layer
and the outer and inner characteristic envelopes and is illustrated in Fig. 9. The characteristic
envelopes are the surfaces normal to the body surface with the outer one containing the inviscid stream-
line while the inner one contains the surface streamline. Raetz also states that the solution at a
glven point depends only on the solution within another distinct zone, called the "dependence zone."

ZONE OF INFLUENCE
iy ZONE OF DEPENDENCE /

\ _— F—

Vd
INVISCID STREAMLINE /

/ L e
/ S
'/ X e
L— . B0DY SURFACE

Figure 9. Hegion of influence and dependence.

This zone is formed by the region bounded by the body surface and the edge of the boundary layer, the
outer and inner characteristic envelopes passing through the solution point and an upstream initial-
value surface which nowhere coincides with a characteristic envelope. There must be unidirectional
flow across the initial-value surface. Such a zone has the important property: Appropriate data on
the initial-value surface and boundary conditions at the body surface and edge of the boundary layer
determines a unique solution of the three-dimensional boundary-layer equations everywhere within and
only within the zone of dependence. The appropriate initial conditions for a compressible gas as
given by Tinglv are the density profile, the velocity component u and a third quantity which is a
combination of the initial profile of P, u, v, and w. The zones of influgnce and dependence for
three-dimensional boundary-layer equations have been re-examined by Hangl‘ from the point of view of
subcharacteristics which are the streamlines of the flow.

For the numerical solution of the three-dimensional boundary-layer equations, the finite-difference
scheme must take into account the zone of dependence. The stability of the schemes and where the
solution can be calculated on a surface with given initial conditions are determined by the zone of
dependence. In two-dimensional calculations the zone of dependence is automatically taken into account.
For three-dimensional solutions the marching direction specification is a function of the problem being
solved and introduces another complexity to the numerical solution procedure. The boundary-layer
solution regions are also limited to flows without separation phenomena. As used by Eichelbrenner,ua
we call "separated" a region that is inaccessible to the viscous flow coming from infinity upstream.

He also introduced the term "clash phenomena” to describe the coming together of two boundary layers.
This phenomena gives a boundary region where the governing equations, (2-4) to (2-11), are not valid.
Again, more complexity results in determining the three-dimensional solution due to separation and
clash phenomena.
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10.2 Coordinate Systems

With the governing equations in terms of an orthogonal coordinate system, the surface
coordinates must be defined and the metric coefficients determined. The selection of a coordinate
system in the past has meant a choice which results in a simplification of the governing equations
and boundary conditions. When numerical solutions are being obtained, this consideration is not
important. A coordinate system which allows the solution to start from the initial conditions and
proceed in a logical manner over the surface is more imporbant. Since at present there appears to
be no superior coordinate system, the types of coordinates used by various authors will be reviewed.

A coordinate system coinciding with the inviscid streamlines was discussed by Hayes‘a and has
been used mainly for approximate solutions, for example Fannelop.'“® Most authors have used coordinates
related to the geometry of the surface. The simplest case is Cartesian coordinates where hl =h =],

and this can be used on developable surfaces (bending a plane without stretching or shrinking). ~For
these flows, the boundary conditions at the wall or at the edge of the boundary layer have been used
to generate the three-dimensional boundary-layer flow. A geodesic coordinate system has been used
by Moore'®® where the metric coefficients are h1 =1 and h, = r(x ,x,). For the case of a body of

revolution, this system is the same as that given by Eg. (;-1) for axisymmetric flows where r = rb(xl).
For a conical body, x) is measured along rays from the apex and r(xl) is a linear function of x

giving the scale change of the noncircular cross section. This is the coordinate system used by
McGowan and Davis'*! for conical bodies in supersonic flow at incidence. Moore'** also states that
the geodesic coordinate system can be formulated in any surface where x is measured along the surface

geodesics (1line joining two points on the surface to give the shortest distance). The surface contour
x - 0 is chosen anywhere except it must be orthogonal to the geodesics and the coordinate system will

be orthogonal. Wang“s has used an ellipsoidal coordinate system for the three-dimensional flow over
an ellipsoid at incidence. For the same body at zero incidence, Der and Raetz'® have used as one
coordinate the line of intersection of the body surface and a meridian plane. The other coordinate
on the surface are lines perpendicular to the first set of lines of intersection and is illustrated in
Fig. 10. Der'*® indicates that a numerical method of calculating this type of orthogonal coordinate

4..“.0..

| POINT

Figure 10. Surface coordinate system.

system on a general body configuration has been developed. This same type of coordinate system has
been used by Blottner and E1118**” for blunt bodies at incidence. An improved procedure for finding
the surface coordinates is given. Rather than the origin at the nose of the body, the origin of the
coordinate system is located at the stagnation point which allows the solution to proceed away from
this point in a systematic manner.

The analysis in this paper has been limited to orthogonal coordinate systems, but this is not
necessary . Shevelev'*® has used a non-orthogonal coordinate system to obtain the incompressible
boundary-layer flow over an ellipsoid at incidence. The coordinate system employed is similar to
that illustrated in Fig. 10 with meridional planes about an axis which goes through the stagnation
point and the center of the ellipsoid. The intersection of these planes with the body surface gives
one coordinate. The other coordinate is obtained from the intersection of parallel planes with the
body surface. The parallel planes are perpendicular to the plane of symmetry and are parallel to the
plane tangent to the body surface at the stagnation point. There does not appear to be any advantage
to use the non-orthogonal coordinate system for this problem. However, nonorthogonal coordinates would
be useful if the boundary-layer results are made available in a more natural coordinate system of the
body being considered. Also, Rizzi, et.al.*™ have used a non-orthogonal curvilinear system to
obtain the supersonic inviscid flow on blunt bodies and it would be beneficial to use the same system
for the boundary-layer solution.
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10.3 Transformation of Governing Equations

In order to have the three-dimensional boundary layer of more uniform thickness in the
computational coordinates and to obtain ordinary, differential equations at a stagnation line,
stagnation point, and tip of bodies, a similar transformation of the equations is employed. No
single approach has been adopted to transform the governing equations; therefore, some of the
approaches that have been used will be given.

In order to obtain similar solutions, Fong159 introduced the new independent variables

X
g - f (ow),, ax, (10-1a)
0

y
1 -\/ue/(zg)f P dy (10-1b)
0

w = fx > (u), , ax, (10-1c)
0

Two stream functions are used to satisfy the continuity equation. The governing equations for the
flow about yawed infinitelcylindrical surfaces have been transformed with the Levy-Lees type
variables by Zemlyanskii. ®® The independent variables become

€ = F (%), ueh§h1d11 (10-2a)
0

¥
Ul '(“ehB/‘[z—g).[o P ay (10-2b)

L Xy (10-2¢)

and the velocities are written as
u=u af/37 = u F (10-3a)
LA dg/3M = w, G (10-3b)

For (artesian coordinates (h1 = h_ = 1) the following transformation has been used by Dwyer and
McCroskey,'®“ Fillo and Burbank,®® and Cebeci'®* for incompressible flows:

£ = x (10-ka)
m -,/ue/(zvi) ¥ (10-Lb)
w = X (10-4¢c)

The factor of 2 in Eq. (10-L4b) does not appear in the paper of Cebeci while the same new independent
variables with 2 in the numerator have been used by Rlottner and El1lis‘*’ for blunt body incompressible
flows. Dwyer and McCroskey introduce the new dependent variables

F= \,\/ue (10-5a)

V= v\&7(2\ue) + F(B = 1)/2 + (w/u)) 8 /2 (10-5b)
where

Be = (S/u.) du /3%

)

B1 = (§/ue) ane/Bu

The resulting governing equations are second-order partial differential equations. In the work of
Fillo and Burbank, and Cebeci, two stream functions are introduced to satisfy the continuity
equation which gives
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u = dy/dy (10-6a)
V= - BVBxl - 6@/33(3 (10-6b)
w = /3y (10-6c)
where
¥ = V2w £ (§,T,0) (10-7a)
P = we,/Z\Jx/ue g(€,M,w) (10-7b)

This approach has been used previously by Moore'** for the compressible, three-dimensional boundary-
layer equations. Fillo and Burbank introduce F = 3f/31 = u/ue and G = 3g/d7| = w/we which makes the
governing equations second-order while Cebeci uses f and g as the independent variables and has third-
order equations. The approach of Fillo and Burbank is the same as that used by Fannelop for the two-
dimensional equations (see Section 5.4.4). For the blunt body solutions of Blottner and Ellis, the
new dependent variables are the following:

F = u/ue (10-8a)
G= w/We (10-81))
v-2 E[v‘é/nev§ + (F/n) 3/3x, + (W a/uh) aTV3x3] (10-8¢)

where W_1is a reference velocity which can be w_or u . The resulting governing equations in this case
are secSnd order. < =

For the compressible flow on sharp cones at incidence, and with and without spin; Dwyex‘l“"'a and
Watkins’®® have used nearly the same new independent variables. The method of Watkins is presented
and it is appropriate for any sharp body of revolution. The metric coefficients are h1 = ] and
h, = r, and the new variables are

) b
g -fﬁ (Pw),, *f axy (10-5a)
0
y

1 -,/ue/(zt:) rb/o P ay (10-%b)
w=xy T 9 (10-0c)

The new dependent variables are
F = wu, (10-10a)
G = w/u, (10-10b)
6 = T/Te (10-10¢)
V= \/?1§./ue Pv/[rb(pu;.] + 2€ [F r, 3Mex + 6 3T~/5x33/[rf,(°u)r1 (10-10d)

The governing equations are of second-order and are a more general form of the two-dimensional
equation given in Eqs. (3-8). Vatsa and Davis'®® have used Levy-Lees variables for the compressible
flow on a sphere-cone at incidence and with geodesic coordinates. The solution is restricted to the
downstream region of the body. The new independent variables are

€ = x (10-11a)
M= uehB/‘/‘zT f o dy (10-11b)
0

w = x (10-11c)
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where

424 .IF; p £
=8t : eueueh3 ds
The new dependent variables are introduced as follows:
P& Ll/ue
G = w/we

&= T/T,

and a velocity-like term V is defined which satisfies the continuity equation.

The three-dimensional boundary-layer eguations have also been transformed with the Crocco
variables by McGowan and Davis,'*® Mayne,'® and Popinski and Davis.'®® Another type of transforma-
tion has been used by Der and Raetz'® and Warsi where the normal coordinate y is replaced with
T =J/1-F anda shear coefficient is introduced as an unknown.

10.4 Inviscid Flow

One of the major problems with solving the three-dimensional boundary-layer equations is
the determination of the inviscid flow. The purpose of this section is to indicate the problems that
have been solved and what information was used for the inviscid flow. The following three-dimensional
flows have been investigated:

1. Ellipsoid at Incidence - For incom?ressibla flow the potential flow solution is used.
{Shevelev, '~ Hlottner and Ellis,'*” and Wang*‘")

2. Flat Plate with Attached Cylinder - The incompressible flow around the cylinder is

obtained from potential theory. (Dwyer,'®® Fillo and Burbank,®” and Cebeci®*)

3. Parabolic Flow over a Flat Plate - The inviscid velocities are specified and for
incompressible flow the governing equations reduce to a similar solution. This
inviscid flow has been used to investigate the influence of a wall hot spot on
the three-dimensional flow (Krause and Hirschel'®').

4. Jet Against a Wall - The inviscid flow for this probleg is obtained from potential
Tlow theory for two impinging jets. (East and Pierce'’®® and Cebeci'®*)

5. Rotating Blades - An extension of a result of Sears which relates the steady
potential flow past a nonlifting blade in a uniform, two-dimensional stream to the
desired flow is used. (Dwyer and McCroskey'®“)

6. Conical Flow - The inviscid flow over circular cones at incidence has been obtained
numerically by several authors and these results are used for the inviscid flow on
spinning cones. These solutions are only a function of xq and can be used in

tabulated or curve fit form. Usually the pressure is taken from the numerical
solution and the remaining edge properties are obtained from the inviscid flow
equations. (Watkins'®® and Dwyer and Sanders'®®) The effect of the swallowing
of the inviscid flow has also been taken into account on circular cones. (Mayne'®”
and Popinski-Davis'®®)

7. Blunt Bodies - Several solutions have been obtained for the supersonic and hypersonic
flow over blunt bodies. A Newtonian type of pressure distribution has been used to
generate the inviscid flow conditions on a sphere-cone. (Der'*®) The other inviscid
flows have been obtained from numerical solutions and the configurations that have been
considered are sphere-cones, ellipsoid, and segmental body (sphere-reverse cone) at
incidence. Curve fit relations have been used to represent the complete numerical
data in some cases (Andreev and Shevelev'®®) while in other papers only the pressure
is treated in_this manner with the other inviscid flow conditions calculated.
(Vvedenskaya,mz’ Shevelev,°"° Va{asa-l}mris,“"3 and Popinski-Davis'®®

8. Flow over Sphere with Interference - The inviscid flow f?rvthis problem was obtained
from experimental measurements. (Karabelas and Hanratty'®’)

The approximate techniques for solving three-dimensional boundary-layer flows of
FannelopHb and Dedarnette and Hamilton'®® have generated procedures for obtaining

the inviscid flow and this work should be considered as a possible approach. Also,
there have been no direct finite-difference solutions of the inviscid surface equations,
(2-14), where the pressure is specified and is obtained from a complete numerical
solution.

There appears to be considerable difficulties with handling the inviscid flow data

and problems are encountered with obtaining smooth distributions of the flow quantities.
The swallowing of the inviscid flow on blunt bodies has not been investigated and this
phenomena introduces a significantly more complex data handling problem than the case
with constant entropy on the body.
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10.5 Finite-Difference Methods

There have been various schemes proposed for solving the three~dimensional steady boundary-
layer equations, (2-l4) to (2-8). Both explicit and implicit methods have been used and these methods
are stable for two-dimensional flows. However, for three-dimensional flows there are restrictions
on the allowable step-sizes to maintain numerical stability as pointed out by Krause, et.al.’®® Since
the three-dimensional boundary layer has zones of influence and dependence, the numerical scheme must
take these into account. Krause, et.al. have shown that the following stability parameter Y must
satisfy certain inequalities:

Y= (h1 w Axl)/(hB u Ax3) (10-12)

The restrictions on Y will be indicated for the various schemes which will show that many schemes are
unstable with a reverse crossflow. The other interesting property of the various schemes is the
initial and boundary conditions which are required to continue the solution downstream without
dropping grid points.

The governing equations for momentum and energy conservation in either physical or transformed
coordinates contain first derivatives in the three coordinate directions and second derivatives only
in the direction normal to the surface. Rather than writing all the difference relations for each
scheme, sketches will be used to illustrate the various methods. The grid system and notation
employed is given in Fig. 11, where the y-coordinate is coming out of the paper and all grid points
shown are at the location (j). The unknown grid points in all cases are at the location (i,k).
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i-2 il | e T DESIRABLE | BOUNDARY CONDITIONS

Figure 11. Grid System and Notation.

The y-derivatives are evaluated with central differences as follows unless indicated otherwise:

(@/2y); g o= 0y = W)y /(20y) (10-13)
QPwray®)y § o= Gy = a0+ ), /0y (20-14)

The first derivatives in the and x, directions are evaluated with the points at the arrowheads.
For the illustrated case in Fig. 11, éhese derivatives are

(OW/x) )y g = (W - W _p)y /(20x)) (10-15)
(/%305 3 5k ™ Meag = W )gq, 57 (20%3) (10-16)

The location of necessary initial and boundary conditions required for each method will be shown with
a dashed line. If the desirable boundary conditions, which are indicated with the dotted line, are
not available, then a grid point is dropped as the calculation proceeds in the xl-direction.

If the continuity equation has been retained as one of the governing equations, then it needs
to be handled differently than the other conservation equations. The continuity equation in either
the physical or transformed coordinates contains only first derivatives in the three coordinate
directions and these derivatives are evaluated as follows:

(W/2y); yagpe = Wy =W )y /by (10-17a)
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aW/ox, = [(BW/Bxl) x (aW/axl)J_l!/z (10-17b)

oW/ex, = I(aw/ax3 )y + (BW/bx3)3'1I /2 (10-17¢c)

The y-derivative is evaluated at the (i,k) points as indicated by the circle in the sketches for the
various schemes. The first derivatives in the x and dirsctions in Eqs. (10-17) are evaluated

with the (i,k) points shown by the arrows in the sketches.

The finite-difference schemes are grouped according to the type of solution procedure used to
solve the resulting difference equations. The three groups that result are explicit, implicit, and
cube scheme which are now described.

10.5.1 licit - An extension of the two-dimensional DuFort-Frankel scheme, which was
described in Section 5.5.2, has been applied to the three-dimensional equations by Der and Raetz'®
and Fast and Pierce’®” but these schemes are different. The second derivative in these schemes is
handled in a special manner and is written as

WA g = |Mgen * Wyondyg - O ¢ wi-Z)JI / y* ASRLE)
3J k

The two variations are shown in Fig. 12. For the Der and Raetz scheme, two forms of the initial
data can be used. One case is shown with the heavy dashed lines and the other with the light dashed
lines. For the second case, information is required at the two levels (i-1) and (i-2) and thus a

DER AND RAETZ EAST AND PIERCE

Figure 12. Explicit schemes.

starting procedure is required for this method. The same is true for the East and Plerce scheme. The
authors imply that these methods are stable, but no stability analysis has been performed. One would
guess for the Der and Raetz scheme that the condition required is -1 < vy <1 while for the East and
Pierce scheme the condition is O < vy € ®, This indicates that the Der and Raetz scheme can be stable
for a reverse crossflow while the Fast and Pierce scheme would be unstable. For both of these methods
the only unknown in the difference equations are quantities at the one grid point (i,j,k) which can be
solved explicitly. The Der and Raetz scheme is a second-order method while the East and Plerce scheme
is first order.

10.5.2 Implicit - These schemes are related to the implicit and Crank-Nicolson schemes for
two-dimensional flows. The implicit methods result in difference equations with the unknown dependent
variables appearing at the three grid points, j+l, j, and j-1, with the other locations for the points
being (1) and (k). The various schemes that have been proposed and the restrictions on Y are presented
in Fig. 13. The derivatives are evaluated as the notation in Fig. 11 indicates. The evaluation of the

x3-derivative in the Krause'®® zig-zag scheme is special and is written as

(W/exy)y 5 g e ™ | Weag = Wdyq g * (W - wk_l)i’jl/(zzxx}) (10-19)

The results for the stability parameter are taken from Krause, et.al.*®® and Dwyer and Sanders.®®
Although no stability analysis has been performed for the Shevelev' *° scheme, one would expect the
requirement to be 0 < v < », Shevelev indicated that a Crank-Nicolson scheme should be used and
D.werm"' also utilized the same type of scheme where the y-derivatives are evaluated at the four
corners of the box. Krause''® pointed out that the y-derivatives only have to be evaluated at the
two corners as shown in Fig. 13. All of these schemes become unstable if there is a reverse cross-
flow. The methods shown in the lower part of Fig. 13 are stable with reverse crossflow if the step-
sizes satisfy the stability parameter restriction. The method of Ha11'7° requires two levels of
initial data to start the solution unless initial data are specified along the heavy dashed lines.
The Krause'®® zig-zag scheme requires initial and boundary conditions along the two perpendicular
directions as shown in Fig. 13. The Shevelev, Shevelev-Duyer, and Krause (1969) schemes require the
same type of initial and boundary conditions. The Dwyer-Sandersled scheme 1s the only method which
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Figure 13. Implicit schemes.

can calculate the solution downstream from a plane of initial data. If additional boundary conditions
are not given as shown in Fig. 13, then grid points are dropped as the solution proceeds. This also
occurs with the Hall and Krause (1968) schemes. All of these methods can be second-order accurate
except the Shevelev and Dwyer-Sanders schemes which are first order. Blottner and Ellis**” suggested
that a two-step Lax-Wendroff scheme might be adopted to the advection terms to give a second-order
method when starting with initial data on a plane.

Since the finite-difference equations for the three-dimensional boundary layer are nonlinear, a
linearization is performed. The resulting equations are uncoupled and of the form of Eq. (5-19)
which are solved with the method of Appendix B. The continuity equation is of special form and gives
an explicit solution for v (or related quantity) in terms of the other dependent variables. As
shown for the two-dimensional boundary layer in Section 6, this type of linearization and iteration
converges very slowly. This appears to be the reason that Blottner and F1is**? did not obtain
second-order accurate results as an insufficient number of iterations were performed. The coupling
of the difference equations with complete Newton-Raphson linearization has not been performed. The
resulting difference equations will require the block-tridiagonal procedure of Appendix B. The blocks
will be 3 x 3 for the incompressible boundary-layer equations while 4 x L for the compressible case if
the energy equation is coupled.

10.5.3 Cube Scheme - This method is an extension of the box scheme for two-dimensional
flow described in Section 5.5.5. The governing equations are written as a system of first-order
equations before they are written in finite-difference form. This scheme is similar to that of
Shevelev and Dwyer which is illustrated in Fig. 13. Since the equations are first-order, the y-
derivatives at the corners are evaluated as follows:

(a"’/?’y)i,j-!g,k = (wJ - wd_l)i,k/Ay (10-20)

Also, the first-order derivatives in the x and x, directions are averaged between the values at

(3) and (j-1) as follows: 3
CN [(aw/axl)J + (‘Wa’i)a-l]/z (10-21a)
(B‘d/bx3)j_;5 B I(b'vir/ax3)J + (aw/be)j_ll/z (10-21b)

The evaluation of the and derivatives are then obtained as the arrows indicate in Fig. 13
for the Shevelev and er schéme. This method is second-order accurate and Newton-Raphson
linearization has been used. Therefore, converged solutions should be obtained after a few
iterations. This method uses the block-tridiagonal procedure of Appendix B for the solution of
the difference equations and for incompressible flow the block are 6 x 6. The stability of this
method has not been stated, but it should be unstable for reverse crossflow.

10.6 Solutions and Limitations

The previous discussion has indicated the type of three-dimensional boundary layers that
have been solved. These results generally require the finite-difference solution of three separate
problems as follows:
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(1) Tip, Stagnation Point or Leading Edge - The governing equations are a function of the
transformed normal coordinate and x,. A two-dimensional finite-difference scheme is required and

the solution is started whers the crossflow zero is zero.

(2) Plane of Symmetry - The governing equations are a function of the normal coordinate
and X - A two-dimensional, finite-difference scheme is required and the solution is started at the

leading edge, tip, or stagnation point.

(3) Three-Dimensional Flow - Depending on the initial and boundary conditions available,
one of the three-dimensional, finite-difference schemes of Section 10.5 is employed.

If a code is to have any general use, there must be several of the schemes included in
order that a stable solution may be obtained and allow the solution to continue depending on the local
initial and boundary condition available. Flexibility of the use of various schemes and choice of
where the solutions are performed is required. When regions of separated flow or clash lines are
encountered, the marching procedure must be such that these regions can be excluded or taken into
account properly. The automations of these choices would be very desirable.

Most of the three-dimensional solutions have been for laminar flows, but the extension
to turbulent flows does not appear to add any new difficulties not already encountered with two-
dimensional flows. Turbulent solutions have been obtained by East and Pierce,'® Cebeci,'®* and
Harris and Morris.

The extension of the three-dimensional numerical techniques to unsteady flows has only
been performed by Dwyer. 1% There appears to be no new problems introduced unless flow reversals
occur.

11. STATUS OF BOUNDARY-LAYER COMPUTATIONAL TECHNIQUES

Although significant progress has been made in developing numerical techniques for solving the
boundary-layer equations, there is the need for more efficient procedures. When one is confronted with
the task of solving a three-dimensional flow, a complex reacting gas flow, or a turbulent flow with
complex governing equations; prohibitive computing times can occur. In the earlier work on solution
techniques, the main concern was developing a procedure which was stable and provided reasonably
accurate results when needed. Recently, the interest has been in obtaining more accurate procedures
and solving the more complex flows.

Adequate second-order accurate, finite-difference schemes exist for solving two-dimensional
and axisymmetric perfect gas flows. The method of weighted residuals and the matrix integral method
need to be investigated and the accuracy assessed. Also, higher-order, finite-difference schemes
need further study. For solutions with the same accuracy, the computer time required for the various
schemes needs to be evaluated. Hopefully, a better idea can be obtained on when higher-order schemes
should be used and which methods should be pursued in the future. Automatic techniques should be
developed for keeping the error within certain bounds by changing step-sizes and the order of the
method. For turbulent flows, there is a need to find better ways to specify the grid spacing such
that accurate results are obtained with the minimum number of grid points. As more efficilent techniques
are developed for the two-dimensional boundary-layer equations, they can be utilized in the solution
procedures for unsteady, three-dimensional or real gas flows.

For unsteady, two-dimensional boundary-layer flows, there has been a limited amount of work
performed. The two-dimensional techniques have been extended to the unsteady case, and three-
dimensional steady schemes have been utilized when there is reverse flow. If there is reverse flow,
further study is needed to determine the validity of the use of the boundary-layer equations.
Additional work on the appropriate transformation to use with the unsteady boundary-layer equations
is needed.

For steady, three-dimensional flows, difference schemes have been developed for various initial
and boundary conditions and a limited number of problems have been solved. One problem appears to be
the development of a general code for solving a variety of three-dimensional flows. This requires
further evaluation of coordinate systems, transformations, and more accurate and better ways of
handling the inviscid flow data needed. Also, more flexibility needs to be added into the codes
such that the various difference schemes can be used as needed to satisfy the zones of dependence.
The interaction of the boundary layer with the inviscid flow is a difficult problem that has only
been handled for the sharp cone at incidence. One of the significant problems is knowing when or
where to utilize the boundary-layer approach for a problem. For boundary-layer flows with boundary
regions and significant interaction with the inviscid flow, perhaps the parabolic approach or the
complete Navier-Stokes equations should be used for these flow situations.
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APPENDIX A
SOLUTION OF MODIFIED TRIDIAGONAL EQUATIONS

A method is presented for solving the following coupled, finite-difference equations

AyFya * ByFy - CiFga v ayVy BTy 7 Dy

v +d

agliilyh Ty, Wy

s Y =
| J-1
These equations are a particular form of the block~-tridiagonal equations and a special form of the
solution procedure of Appendix B.
The following parameters are first determined:

E. =0

G, =0 Obtained with boundary conditions at outer edge

=)
]

Rl CRECREN I

G=(cc. -a-bj)/fi‘ » J= (T -1), (J-2),-

Ji )

o " oyt 0 - 2y) 4 2 opepa)e
where

@ = By - O4Ey * oy (0505 - 8y)
Then the solution is obtained from

Boundary conditions at wall
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APPENDIX B

SOLUTION OF TRIDIAGONAL AND BLOCK-TRIDIAGONAL BEQUATIONS

Finite-difference relations of the form of Egs. (4-18) are solved efficiently with the procedure
we will describe. For tridiagonal equations, all of the quantities in Egs. (4-18) are scalars while
for block-tridiagonal equations the quantities are matrices and vectors. The Gaussian elimination
process given below has been called the Thomas® " ® algorithm and apparently was discovered independently
by many others. For additional details of the block-triangular decomposition see, for examgle,
Isaacson and Keller'’® and for explicit relations for blocks up to 3 x 3 see von Rosenberg.’’* A
compar}ggn of the block-tridiagonal factorization method with the band matrix method has been made by
Varah.

The solution is started by first determining the following quantities:

B =g

j = 2;31"'(J - 1)
e, = (B - AE )'1 (D v Ae )
J 4 J3-1 J 5 3-1
The solution is then completed with the use of the following relations:
W, = (E -2k ) (D, +ae =e
) J J7J-1 J J J-1 )

W

5 = ijj+1 + ey j=(-1), (J -2),-.:2,1

If the boundary conditions for the tridiagonal equations are

then

ul'ww el‘ww
Ay =0
BJ =] eJ =1
D, =1

[

For the block-tridiagonal equation, the boundary ccnditions give the above terms and are matrices
as shown in Egs. (L-18).

Greater efficiency is attained in this solution procedure for the block-tridiagonal case if the
equation for Ej and ej are solved with Gaussian elimination rather than with the use of the inverse
matrix. ‘
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I. The Cauchy problem for partial differential equations.

I.1. Notations and examples

In this chapter we consider the Cauchy problem for partial differential equations. Let x = (xl,...,xs)
denote & point in the real s dimensional Euclidean space Rs and let t denote the time. Then we con-
sider systems

(1) du/at = P(x,t,3/3x)u , x€ Rs s t > to
for which at time t = to initial values
(1.2) u(x,to) =f(x) , x€ Rs
are given. Here
(1) pt1) ¢(1)
u = . , F = . o f = v
u(n) F.(n) f.(n)

are vector functions, depending on x and t .
P(x,t,3/3x) is a general differential operator of order m , i.e.,

kS [v] Y1 Vs
(1.3) P(x,t,3/ax) = ] P.(x,t,3/ax) , P, = A (x,t)3!Vl/ax. “...0x
j=0 ? S 1 O R : ’

where Av(x,t) are nxn matrices and v denotes the multi-index

(1.4) 2l PPPPY ) . v. natural number, |v| = Jv, .
8 J Jd

Now we consider a number of examples.

(1) The most simple initial value problem is

(1.5) au/dt = cdufax , ul(x,0) = f(x) ,
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wvhere ¢ 1is a constant. Its solution is given by
(1.6) u(x,t) = f(x+ct) ,

i.e., the solution is constant along the characteristic lines x+ct = const. Another way to obtain the

solution of (1.5) is by Fourier transform. Let f£(x) £:L2(-~,-) then we can represent f(x) in the form
/2 7 i 1/2 T i
E f e'* Flw)dw , Hw) = (21) i et

-0 -

(1.7) r(x) = (2n) fx)ax .

Assume that also the solution can be represented by a Fourier integral

+o
(1.8) a(x,t) = (200712 [ o1 Seu,6)dw .

Then we get from (1.5) and (1.7) formally

+oo
-1/2 f e

-

0 = du/3t - caufax = (2n) X(3u/3t - iweu)dw ,

-1/2 +? Jiux

0 = u(x,0) - £(x) = (2r) (3(w,0) - #(w))dw

’
-0

i.e.,

au(w,t)/at = iwcilw,t) , o(w,0) = flw)
and therefore

w,t) = e $w) .
Thus by (1.8)

=N/ *7 eiw(x+ct)

(1.9) u(x,t) = (2n) Flw)dw = f(x+ct) .

-0

(2) Another example is the wave equation
{1.10) 2%u/at? = 2%u/ax° .
In this case we have to specify u and 3u/dt as initial conditions for t =0 , i.e.,
(1.11) u(x,0) = £(x) , du(x,0)/3t = g(x) .
We write (1.10) as a first order system. Let v(x,t) be a function such that
(1.12) du/dt = 3v/ax , v/t = 3u/fdx .

Differentiating the first equation with respect to t and the second with respect to x and eliminating
v , shows that u is a solution of (1.10). u fulfills also the initial conditions (1.11) if we specify

v(x,0) in such a way that
du/at], o = av(x,0)/3x = g(x) .

(1.12) can also be written in matrix form
(1.13) dw/at = Adw/ax , A =(O l) , w=(%).
1 0 v

A is a symmetric metrix. Therefore there is an orthogonal matrix O such that

A
(1.14) oao*=oact=f t O
0 \2
where Xj are the eigenvalues of A . In this case

(1.15) A, =41 , A,=-1 , 0=-—= 5
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Introduce therefore new dependent variables by

(1)
y = y = 0w .
y(2)
Then
1 0
(1.16) dy/at = 3y /ax
o -1

and we get two scalar equations of type (1.5) which can be solved explicitly.

(3) A third example is given by the so-called heat equation.

du/at = aaeulaxz , & =const. >0,
u(x,0) = £(x) .

Its solution can be easily computed by Fourier transform.

(4) In large scale calculations the underlying partial differential equations are much more compli-

cated. As an example we state the linearized shallow water equations.

u UO 0 ¢0 u
(1.17) o v |=| 0 U.O 2 v +
3t 0 ax

[} 1 0 Uo ')

Vo 0 0 u
9

+l o v, 8, 3y v » B, #0 .
0o 1 Vv, g

Here u, v denote velocities in the x, y direction respectively and @ represents the potential.
Uo» Vor %

Other examples are furnished by the equations of Gas dynamics, Maxwell's equations and the equations

are mean values which can be functions of x, t .

governing magneto hydrodynamics.

I. 2. Well posed problems

The solutions of problems defined by (1.1), (1.2) are not always well behaved. Consider for example
the equation

(2.1) du/at = —32u/3x2
with initial value
(2.2) u(x,0) = f£(x)

where the Fourier transform f(w) of f(x) has compact support, i.e.,

N .
(2.3) rix) = (20)°12 [ A% 3(u)au .
-N
The solution of this problem is obviously given by
N . 2
-1/2 ! pluxtu’t
=N

u(x,t) = (2n) flw)dw .

Thus by making N large enough we can construct solutions which grow arbitrarily fast exponentially. This

is often referred to as exponential explosion. Of course this explosion does not occur if f(w) decays
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sufficiently fast, for example if |[f(w)| < const. e . This assumption is in most cases too restrictive
because the initial data are often given by measurements and therefore prone to spurious disturbances. The

only reasonable assumption one can make is, that there is a constant p > 0 such that

(2.4) |$(w)] < const. (Ju|P+s1)L

i.e., that the Fourier transform of the initial values decays polynomial. This can never prevent any expo-
nential explosion.

Consider the differential equation (1.5). Its solution is given by (1.9). Therefore, if
I%(m)l < const. (o] + 1)™P then the same is true for u(x,t), i.e., Ia(m,t)l < const. (|| + 1)°P. Thus
there is no exponential or polynomial growth of the solution's Fourier transform. In fact we get from

Parseval's relation for every fixed t :
4o 4o
[lalx,t)|%ax = [ |£(x)]|%ax.
An example of polynomial growth is given by the differential equation
u 1 1 u u(x,0) f(l)(x)
(2°5) 3_at- = a_ax L] =i (2) L
v 0 1 v v(x,0) £ =)

Its Fourier transform is

e 101 a a(w,0) )
—_— = i@ 5 R = . 5
= v 0 1 v v(w,0) f(z)(w)

Therefore
Bw,x) = o1 H1higy o saral® £2)G)
Host) = et #2)(y)
Lime,
alxst) = (2012 T A0 30 ) 4 5 d @D ) raw
xt) = (2n) 12 ] o) 320,

-0

Observing that

+o +o
! |3f/3x[2dx = | wzl%(m)lzdx

-0 -0

we get instead of (2.5)

+oo +o
f]u(x,t)lz + Iv(x,tﬂzdx < flf(l)(x)|2 + |f(2)(x)|2dx

-0

+?| af(2)|2

e 3x

dx .

Thus polynomial growth of the Fourier transform corresponds to the loss of derivatives.

We shall now define what a well posed problem is. Let LQ(RS) be the space of all quadratically inte-
(1) (n)
u )

grable vector functions u = (un'~’,..., and denote by

(2.5) (uv) = ] f E(i)v(i)dx , ]l = |(u,u)1/2|
R
S
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the usual scalar product and norm. We define:

Definition 2.1. Consider the Cauchy problem (1.1), (1.2). It is weakly well posed if for every f € C;
(r some number) and every initial time t = ty there is a unique classical solution u(x,t) , (i.e., a
solution which belongs to c™ as function of x and C1 as function of t) with:

alt-t )
(2.6) Nulx,t)|| <ke O TR
laf<p

It is strongly well posed if (2.6) holds with p = 0. Here K, a, p are constants independent of f and

to.

I.3. Equations with constant coefficients

In this section we consider systems (3.1)

du/at = P(3/3x)u
(3.1)
u(x,0) = f£(x)

with constant coefficients. Let w = (ml,...,ms) denote the (real) dual variables of x = (xl,...,xs)
and denote by

@ . 8

(3.2) flo) = (20)71/2 [ KD px)ax L, G = T wx,

-0 i=1 - 1
the Fourier transform of f(x) . We assume that for every T there is a constant R} such that
(3.3) [#(w)] =0  for |u| > Ry .
Then it follows that (3.1) has a unique solution belonging to L, for every fixed t which is of the
form

o, R

(3.1) ulx,t) = (2n)7 12 [ €00 S0, 4 yay

-

= (20712 A Gy
u|§ﬁf

Introducing (3.4) into (3.1) gives us

Quluat) o psy)3

wlw,0) = Fw)

dt ’
where
Q ks . 3 : Ul . Vs
P(iw) = jZo Pj(lw) s Pj(1w) = “}‘j Av(1wl) - (1ws) .
Therefore
a(w,t) = eP(iw)t ?(w)
and
(3.5) alxge) = (an) /8 [ Glwsx Plie)t g5,

lw|<r,

is the solution of our problem.

We can now prove

Lemma 3.1. The Cauchy problem (3.1) is weakly well posed if and only if there are constants K, a, D
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such that

(3.6) | PO < klalP & .

Especially if (3.6) holds with p = 0 then the problem is strongly well posed.

Proof: From (3.5) and Parseval's relation we get for every fixed t
(3.7) Nutx,e) 112 = f [PEO%2 120) 12 a0 .
lo]<R,

If (3.6) holds, then (3.7) implies
2 .2 2at 7 2 2 2at 2
ulx,t)]1% < k% @ [ |0]®P [£(0)]? a0 < K% & Helly -

Assume now that there are no constants K, a , p such that (3.6) holds. Then there exist for every

triple of constants K, a , p an such that

mo, to

Pliw, )t at
le 0 %> x JaPe © .

Therefore there is a whole neighborhood of mo', such that

P(iw)t at
(3.8) |e Ol > K|m|p e 0 for |m—m°| <8 .

Let us choose f(x) in such a way that
f(w) =0 for |m—m0| >8 .
Then by (3.7) and (3.8)

[utx,t)]]? > K2 £2¢ ||f||§ .

This proves the lemma.
From the last lemma we get

Theorem 3.1. The Cauchy problem (3.1) is weakly well posed if and only if there is a constant a such
that for all w for the eigenvalues A of P(iw) the estimate

(3.9) Real X < a
holds.
Proof: Let ) be an eigenvalue of P(iw) . Then

.

Pliw)t (Real A)t
|e | > e

Therefore (3.9) is a necessary condition.

eP(iw)t

Assume now (3.9) holds. is the general solution of the system of ordinary differential

equations

dy/dt = P(iw)y .

Let U = U(iw) be a unitary matrix which transforms P(iw) to upper triangular form, i.e.,
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A 0 000
1 0
0 12 0 0
*
UPU" = A+Q , A=1| . . . . ... . ,
0 . . . 0 A
n
0 q12 o oie qln
0 0 q23 cer Qo
Q= . . . . . L) .
o . . . . 0
and introduce new variables
v = Uy .
v 1is the solution of
dv/dt = (A+Q)v .
Let
At
v=e w ,
then w 1is the solution of
-At At

dw/dt = Qlw ; Ql =e Qe 3

Here Q is of the same form as Q . Therefore

1
Q.t n n
1 v =A t
w(t) = e = Z nge t z QV EA ’
v=0 v=0
i.e.
n 3
(3.10) o v =yt Z AR R eP(lw)t
v=0
. m At at
The theorem follows from the observation that |Qf < const. lwl s Ie | <e .

We thus see that algebraic conditions to decide whether a Cauchy problem is weakly well posed are

relatively simple. This is not so for strongly well posed problems. Without proof we shall here state

Theorem 3.2. The Cauchy problem (3.1) is strongly well posed if and only if there are constants KO, Kl’

a and for every « a nonsingular transformation T = I'(w) with

max{|I(w) , |T-l(w)|} <Ky

Al q12 . see qln
. 0 Ay Qp3 cer Gy
Mw)P(iw)l (w) = s
0 « .« o eee A

where

Real X, < Real A, < ... < Real X < a
1 2 n
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and
< |+ X
|qij| < Kl(IRea.l xll 1)
We shall now consider a large number of examples.

(1) Hyperbolic systems. Consider a first order system

du/ot = [ A dufax, .

It is weakly hyperbolic if the eigenvalues A of

(3.11) P(iw) =i ] A w

are purely imaginary. An example is given by the equation (2.6). It is strongly hyperbolic if there is a
constant K, and a nonsingular transformation I = I'(w) with

1
(3.12) max{|I{w)| , lf-l(m)l} K
such that
Xl 0 «es 0O
A 0 ... 0
1. 2 :
{3.13) Mw)P(io)r {w) =i o L =it ; real.
0 . .+ . ees A

All systems where the matrices Av are Hermitian are examples of strongly hyperbolic systems. In that
case we can choose the transformation TI'(w) as a unitary matrix. The wave equation (1.16) is an example.
Also the shallow water equations (1.17) are strongly hyperbolic. In this case we can symmetricize the

coefficient matrices by introducing new variables

6—1/2

) u 0 0 0 u
] 0 0 1 )
and get
= 1/2 -~
u UO 0 ¢0 u
3 ~ | 2 -
pvy v = 0 UO 0 % v +
1/2
9 2y 0 Uy ¢
Vo O 0 u
1/2 ] =
+]0 VO ¢0 3y v .

A=Y
-
~
n

<

=

The Cauchy problem for weakly hyperbolic systems is weakly well posed. This follows from Theorem 3.1.
For strongly hyperbolic systems the Cauchy problem is strongly well posed. This follows from Theorem 3.2,
but also directly from

P(iw)t -1, Pliw)t -1 2 iAt 2
B I e Pt TP ol et Il

and Lemma 3.1.

The simplest parabolic differential equation is the heat equation

/ot = 3%u/ax> .




The Cauchy problem is strongly well posed because

Iep(iw)tl . e—wet

P(iw) = e ,» i.e., <1 .

Generally ve define

Definition 3.1. A system (3.1) is called parabolic if its order is even, i.e., m = 29 and the eigen-

values k of the highest order term Ph(iu) fulfill an ineguality

(3.14) Real « < -§[w|/™ , & =const. >0 .
We want to prove
Theorem 3.3. For parabolic equations the Cauchy problem is strongly well posed.

Proof: For |w| # 0 we can write P(iw) in the form

. . Ml g . .
P(iw) = Pm(lm)(I + jZO . (1&)?5(1m))

where by (3.1U4)

lim P (iw)P.(iw) = 0 .
lw]+= @ g

Therefore there is a constant a such that for the eigenvalues ) of P(iw) the inequality
1 m
(3.15) Real A < - 3 §lu|” + a

holds. Therefore the representation (3.10) gives us

1 m
- Eélml t

'eP(im)t' < const.(|w|mt)" - e .t

at
< const. < const. e .

2n\n -n at
7;) e e
A very useful sufficient criteria to determine whether a Cauchy problem is strictly well posed is

Lemma 3.2. Assume that
(3.16) P(iw) + P"(iw) < ol

then

'ep( iw)tl _(. eut

and therefore the Cauchy problem is strongly well posed.

Proof': ep(lm)t

is the general solution of
dy/dt = P(iw)y .

Therefore

2 1% = y*(liw) + Py < aly[?

and the lemma follows immediately.

In many applications the equations are mixed hyperbolic-parabolic. A typical example is

du/at = A 3uf3x + B dufdy + clau/ax’ + aau/ay2)

49
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wvhere A, B, C are symmetric matrices with C > 0. The Cauchy problem is strongly well posed because
s LI
P(iw) + P (iw) 20 .

Another type of equations appearing in applications are the Schrédinger equations. The simplest example

is
du/at = i aeulax2 .

The Cauchy problem is strongly well posed because

2

Pliw) = -iw , i.e., leP(lw)tI 1

Another equation is given by

2
Ju 3 u 3u
== — -— .
~ 3.2 TAgmtit

Here

A=-A" , B=B .
Again the problem is strongly well posed because

P(iw) + P (iw) =Cc + C* .

I.4. The Cauchy problem for equations with variable coefficients I .

Consider the system (1.1)
(4.1) du/3t = P(x,t,3/3x)u
with variable coefficients. Connected with (1.1) are the systems with constant coefficients
(k.2) dw/at = P(xy,t,3/3x)u

o0 t = to. In the last section we

have learned to decide whether the Cauchy problem is well posed for equations with constant coefficients.

which we get from (4.1) by freezing the coefficients at a point x = x

Therefore it is natural to ask the following question: Assume that the Cauchy problem is well posed for
all systems (4.2) with constant coefficients. Is it true that then also the Cauchy problem for (4.1) is
well posed?

Unfortunately general existence theorems using the principle of freezing the coefficients are only

known for strongly hyperbolic and parabolic systems which are defined by

Definition b4.1. The system (4.1) is parabolic (strongly hyperbolic) if all the systems (L.2) are uni-
formaly parabolic (strongly hyperbolic), i.e., the inequality (3.1L4), ((3.12)) holds with a universal
constant & > 0 (Kl) 2

We have

Theorem U4.3. Assume that the system (4.1) is parabolic and that its coefficients are Lipschitz continuocus.

Then the Cauchy problem is well posed.

Theorem 4.4, Asgsume that the system (4.1) is strongly hyperbolic and that the coefficients are sufficiently

smooth. Then for every x there is a Hermitian matrix H = H(iw,xo,to) such that (4.10) and (4.11)

o to

holds. The Cauchy problem is well posed if one can choose H{iw,x to) as a sufficiently smooth function

o’
of X4 to and w .

There are two classes of equations for which the conditions of Theorem L. hold.
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(1) Symmetric hyperbolic systems.
du/at = ] A (x,t) dufax
vhere Av(x,t) = A:(x,t) are symmetric matrices. In this case
P(iw,xo,to) =1 Z Av(xo,to)wv = —P*(iw,xo,to) s
and we can choose H = I .
{2) Strictly hyperbolic systems. They are defined in the following way.
Definition 4.2. A first order system
dufat = | Av(x,t) du/ax
is strictly hyperbolic if the eigenvalues of
- i P(iw,xo,to) ) Av(xo,to)uv .

t, and w with Ju| = 1.

are all real and distinct for all values of Xy to

We collect the last statements in
Theorem 4.5. The Cauchy problem is strongly well posed for first order symmetric systems and for strictly

hyperbolic systems.

I.5. The Cauchy problem for equations with variable coefficients II.

In the last section we have seen that for parabolic and hyperbolic systems one can decide whether the
Cauchy problem is well posed or not by "freezing the coefficients”. For equations of other types this

procedure is not possible. Instead one can use the so called Energymethod. We start with

Lemma 5.1. Let u, v be vector functions of x = (xl,...,xs) and assume that u(x),v(x)& Sl(Lg) i.e.,

u, v and its first derivatives belong to LQ(RS)' Let A(x) Cl(Rs) be a matrix then
(5.1) (u,A(x) avlaxi) = -(Bu/axi,A(x)v) - (u, aA/axi v) .

If A is symmetric then

(5.2) 2 Real(u, A(x) aulaxi) = -(u, 3A/3x u)
Proof: Let u, v belong to C; . Then partial integration gives us
o5 = »
_i u A(x) av/axi dx; = - -i 3;; (Au) v dx; =
= =
Jou Jox, A vax, + [uw 3A/3x, vdx, .
- i i i i

Therefore (5.1) holds for all functions u, v €,C; . Now Cg is dense in Sl(L2) and therefore (5.1)

holds also for all functions in Sl(Le). Let u = v then (5.2) follows immediately from (5.1) observing
that (u,v) = (v,u).

Consider now the scalar Schrddinger equation
(5.3) 3u/at =i 3/3ax(p 3/3x u) + b 3u/dx + c u = Pu

where p, b and c¢ are real functions of x, t belonging to Cl(Rs). Let u € 52(L2) be a solution
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of (5.3). By Lemma (5.1) we have

-

£ (u,u) = 2 ((3u/t, u) + (u, 3u/at)) =
Real(u, 3u/dt) = Real i{u, 3/3x(p 3u/dx)) +
Real(u, b du/3x) + Real(u, ¢ u) =

(u, (¢ - —; ab/3x)u) < alu,u)

vhere
b
a = max {¢ - = 3b/dx) .
2
%3t
Therefore
(5.4) [latx2)]] < & [ux,0)(]

i.e., an estimate of type (2.6) with p = 0 holds.

This result can be generalized considerably. We have

Theorem 5.1. Consider a system of differential equations

- e = 3 (<= (a2 Nl 2 (3u) s 2 vow .
’ & 3x v 3x 21 3x v v 3x
v=l v v v \Y

Assume that either
(1) A +a°>0 , B =B
v

or

(2) A +A >8>0 .
v v

N
Then an estimate of type (5.4) holds. In the first case a = -]; max(C + C ). In the second case
x,t

1 x.t,v

2
a =%max(c +c") 4 (hé‘_l( max |B - B:I)

Proof: In the same way as for the example we get

2
2 | Ju(x,t)||2 = 2 Real (,. B ) .

s
3 du
Real Z ( ( 1, — ax ( ; ax 5) + (1, o (Evu)> + (1, B, 3% >) + 2(u,Cu)
v=l v v
du du *, Ju .
- ((E ,(AQ+A3 x) - (u, (Bv-BV_)WV >+(u,C+u u) 3

In the first case we get therefore

[

75 a2 < (u, (c + M) < 2] fulx,e)] |2

and the estimate follows immediately.
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In the second case we observe that

ax
v

3 LR 2
= (...’i_ s (Av + Av) ?:—v> < —6”3u/3xv||

and
* F] »
<u. (B-Bv)ﬁ> <mex |5, - 8] full -+ faurasl] <
v x,t
-1 » 2 2 2
< (b6) (w B -sl) Iul12 + 8] Jausax |12 .
v v v
x,t
Therefore
AL SCRNCRE SR TNy
wvhere

.
B=(4)t [ max |B - B
Xty Y

This proves the theorem.
For systems of type (5.5) one can show:

Theorem 5.2. Assume that the conditions of Theorem 5.1 hold. Assume furthermore that either all Av £E0
ou
v ax
v

all x, t, w the eigenvalues «x of

or that the operator Peu = Z 5%— A is elliptic, i.e., there is a constant &§ > O such that for
v

2
Z Av(x,t)mv
fulfill the condition

le] 2 6lo]® .

Then the Cauchy problem is strongly well posed provided the coefficients Av’ Bv’ C Dbelong to Cl 3

I.6. The Cauchyproblem for nonlinear equations.

Not much is known for nonlinear equations
(6.1) 3u/at = P(x,t,u,3/ax)u .

The only general result is the following:
Assume that u(x,t) = U(x,t?) + u(x,t) where U(x,t) represemts a smooth known mean flow and u(x,t) =

disturbance. Linearizing (6.1) with respect to this mean flow gives us a linear systenm
/st = P, (x,t,U 3/ax)u + F(U,x,t) .

Then the following theorem holds.

Theorem 6.1. Assume that U is sufficiently smooth and F(U,x,t) sufficiently small. If
Pl(x,t,U,a/ax) fulfills the conditions of theorems 4.3 or 4.4 then 6.1 has in a given time interval
0<t <T a smooth solution.

Though the result of this theorem is quite weak it shows anyway the importance of the linear
theory.
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I1. Difference approximation for the Cauchyproblem.

II.1. Some simple examples.

Consider the differential equation

(1.1) Ju/dt = u/dx
with initial values

(1.2) g = &5

Its solution is given by

(1.3) W) = @fraul )

i.e. the solution is a wave which travels with speed one. We approximate (1.1) by a number of difference
methods. For that reason we introduce a timestep At > 0 and a meshwidth Ax = N-l, N natural number.

Let (xv'tv)’ X =vVvAx, v=0,%1,%2,...; t =udt, u=20,1,2,...; denote the gridpoints and define

v
gridfunctions vv(t) by

(1.4) vv(t) = u(xv,t), t = ubt .
Furthermore, the fundamental difference operators I, E, E_l, Do’ D,s D_, D+D_ are defined by
(1.5) I vv(t) = vv(t), identity operator
a =1 s .
(1.6) E vv(t) = vv+l(t)’ E vv(t) vvt(t) translation operator
(2aT) 2x D vv(t) = vv+l(t) - vv_l(t) centered difference operator
(1.8) ox D, vv(t) = vv+1(t) = vv(t) forward difference operator
(1.9) Ax D_ vv(t) = vv(t) - vv—l(t) backward difference operator
2
: = Ax = =
(1.10) (8x)” D,D_ v (t) D, (v (t)=v ()
= v (t) =2v (t) + v (t) second order centered difference operator.
v+l v v=-1

Now we approximate (1.1) by one of the following formulas

(1.11) vv(t+At) = vv(t) +at D v (t),
(1.12) v (t+at) = v (t) + At D_ v (t+at),

v v [e] v
(1.13) v (t+at) = v (t-at) + 2at D_ v (t),

v v o v

at?

(1.14) vv(t+At) - vv(t) + 4t D vv(t) +55 DD_ vv(t),
(2.T5) (1 - % At Do)"v(““") = (I + % At Do)vv(t) .

Remark: The construction of all methods except (1.14) is obvious. (1.14) is obtained in the following

way: For the solution of (1.1) we have
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u(x,t+at) = u(x,t) + Atu_ + % (At)zutt + O((8t)3)

t

- Lo, y2 3
-me+Amx+jm)%x+MMﬂ)
i 2 3 2
u{x,t) + At Dou(x,t) o (at) DD_ u(x,t) =@(at)” + at(ax)“) .
All these difference approximations can be written in the form
(1.16) (1 - Ql)vv(t+At) =Q vv(t) +Q vv(t-At) .

Here Qj are operators composed of Do’ D,,D_. Practically all used difference methods are of this

+|
form. The truncation error is defined in the following way.

Definition 1.1. Let u(x,t) by the solution of the differential equation. Then
(1.17) R(t) = (I - Qg )ulx ,t+at) - Qulx ,t) - Q julx ,t-st)
denotes the truncation error., If

(1.18) IR ()] < Mae((ax)” + (a)%)

where the constant M wmay depend on thederivatives of u, then the method is called of order (r,s).
There is never any trouble to determine the order of a difference method. One needs only to expand

the solution into a Taylorseries. For example:

u(xv,t+At) - u(x“,t) - At Dou(xu,t) = At(ut-ux) +

2 t 2
(%}) Uy * A-L%El- U ex L0060

Thus the method is of order (1,2). The same is true for the second method while all the others are of
order (2,2).

As initial values for the above approximations we choose

21rimxv
(1.19) VV(O) = e 0
Then vv(t) is completely determined except the solution of (1.1%). In that case we have also to specify
vv(At). For example
2riux

v (8t) = u(x ,0) + 8t u (x ,0) = (1+2niubt)e v,

The equations (1.11) - (1.15) are all equations with constamt coefficients. Therefore we can solve
them explicitely. The solutions are of the form
2riwx

(1.20) v (t) = (t)e

Here v(t) is the solution of the ordinary difference equations:

(1.11a) v(t+st) = (1 + i sing)V(t),

(1.12a) V(t+st) = (1 + A sing)7! V(b))
(1.13a) v(t+bt) = Y(t-at) + 20i sinf v(t),
(1.1ka) Utest) = (1 + A§ sing - 2sin” 2,
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(1.15a) v(t+at) ==«1 + % i sing)/(1 --% ia sinﬁ);(t),
with X = At/Ax and & = 2wwAx. The initial values are now

(1.21) v(0) = 1,

and in the case of (1l.13a) also
(1.22) v(at) = 1 + 2riwdx .
The solution of (1.1la) is

$(t) = (1 + i sing)*/%%5(0)

For every fixed w we have

lim (1 + Ai sing)t/86 = (2t
At ,Ax+0 .
Therefore the solution of the difference approximation converges to the solution of the differential
equation. However, in actuell computations rounding errors always produce so called "2Ax-waves". In this

case £ = % . If we choose At/Ax = % then

9(6)1% = |1 + a1 sing)* /28|12 = 1« DY (0] .

Thus
t /At 1 10 100 500

Iv2e) 27150 | 1 9.3 | 4.9-10%(2.6-10"8

and the computation is soon useless. If this happens then the method is called unstable. One can show
that the method (1.11) is for fixed relations At/Ax = A > 0 always unstable. For the method to be
useful we must have

(1.23) v = [9(t,0)] < k]v(0,0)]

for all frequencies w . Here K does not depend on w . It is easy to see that all the other methods are
stable if we add in the case of (1.13), (1.1L4) the restriction At/Ax < 1.

The methods (1.12), (1.15) are called unconditioned stable because they are stable for all
A = At/Ax. The other two methods are called conditional stable.

Besides stability and truncation error there are two other important concepts namely dissipation
and dispersion, which we shall discuss now. Consider the difference approximation (1.12) with initial
values (1.19). Its solution is given by

v“(t) = (1 - ai s:'mt;)-t'/m'ea."f“"x

For sufficiently small £ we have

-iner 2% 2 4 @
1 -2 sinE = e o

Therefore £ = 2nwAx gives us

-t /At e2wiwt-(2wm)2A'1Axt+6Kw3(Ax)zc)

(1 - *i ging)

This shows that the amplitude of the numerical solution decays. The higher the frequency the faster is
the decay. This is a purely numerical effect because the corresponding solution of the differential

equation does not decay. Methods which have this property are called dissipative. If the amplitudes
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decay like

iy r-1
o-8(2me) (ax) e . § = const. > 0

the method is said to be dissipative of order r. The method (1.12) is dissipative of order 2 while
(1.14) is dissipative of order 4. (The higher the order the slower the decay).
Not all methods are dissipative. For example (1.13), (1.15) are nondissipative. We consider (1.15).

In this case
. }_l. - t/At
5 sin

2riwx
vv(t) e

AL,
1+ 2 i sing

and it is obvious that

However, for sufficiently small £

y e e T R (o)

2
X . . =
1- 2 1 sing

Therefore

ezﬂlm(X+dt) 5 =1 - "3 A-2(21twa)2 )

vv(t) N 12

which means that the phasespeed depends on the frequency, i.e. there is dispersion. This again is a
purely numerical effect because there is no dispersion for the solution of (1.1). This phase error can
destroy the accuracy of sharp signals. It is then often better to make the approximation dissipative
such that the waves with wrong phase speed will be damped at the same time. This can be done by changing
(1.15) into

d

3 2
Lo - o at(an)® 0% Py (v)

(I - L At D +g¢ At(Ax)3 D 20 2)v (t+at) = (1 +
2 o + - v

1
The simplest parabolic differential equation is given by

(1.2h) au/3t = azu/axz 5

If we in (1.11) - (1.15) replace D, by DD_ and DD_ by D*ZD_2 then we get difference
approximations for (1.24). The first and the fourth method are conditional stable the second and fifth
method are unconditional stable while the third method is unstable. However, we can stabilize the
third method (Du Fort-Frankel) if we replace it by:

v (teat) = v (t-at) + & (v (4) - v (teat) - v (t-at) ¢+ v () .
v v 2 " ytl v v v-1
Ax

The above methods are the prototypes of methods cammonly used in practical applications (see [1]).
One uses one of the in (1.11) - (1.15) described techniques to replace the time derivatives and then
replaces the space derivatives by centered differences.

The methods are then referred to as: First order explicit (1.11), Completely implicit (1.12),
Leap-frog (1.13), Lax-Wendroff (1.14) and Crank-Nicolson (1.15).

I1.2. Stability and convergence.

For systems (1.16) with constant coefficients the stability can be decided in the same way. One

introduces the "ansatz" (1.20) into (1.16) and obtains a system of ordinary difference equation
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(2.1) (1-Q) Jo(teae) = Q v(t) + Q_ Fle-at), ¥(t) = ¥(t,w)

which can be solved explicitely. If (1.23) holds then the method is stable.

For systems with variable coefficients
(2.2) (1-Q (x,t) v (t-at) = Q (x,t)v (t) + Q_,(x,t)v (t-at)

this simple test is not directly applicable. However, in the same way as for the differential equation

one freezes the coefficients in (2.2) and considers all systems
(2.3) (1-Q) (xgst o) v (t4at) = Q (xgato)v (t) + Q) (xp.t0)v (t-at)

with constant coefficients, in the hope that if all systems (2.3) are stable then the seme ig true for
the original system (2.2). Threre is a large body of theory for this (see [1]). As an example we state:

Theorem 2.1. Consider a strictly hyperbolic system of partial differential equations and approximate
it by (2.2). If all systems (2.3) are dissipative then (2.2) is stable.

Theorem 2.2. Consider a parabolic system of partial differential equations and approximate it by (2.2).
If all systems (2.3) are dissipative then (2.2) is stable.

Stability garantees convergence. The following theorem holds. {see [1].)

Theorem 1.1. Assume that the method is stable and that an estimate of the truncation error is given by
(1.18). Then

(2.4) [atx,6) = v (6)]12 < €52 - ((ar)7 + (a0)3)

Here llmvllz = z Imvle Ax denotes the discret Lz—norm.
Y

For nonlinear equations there are two situations. 1) The solution of the differential equation is

smooth. In this case we have [3].

Theorem 2.3. Consider a difference approximation to a nonlinear system of partial differential equations
and assume that the solution u(x,t) of the differential equations is smooth. Linearize the difference
equations around u(x,t) and assume that the resulting linear system is stable. Then the solution of
the difference approximation converges to the solution of the differential equation and an estimate of
type (2.4) holds.

2) For the other situation, namely that the solution of the differential equation is not smooth,
practically no theoretical results are available. However, experience tells that if the solution of the
differential equations is smooth except for shocks and contact discontinuities then there are difference
approximations whose solutions converge. In this case the approximations have to be dissipative and have

to be written in conservation form.

II.3. On the choice of a difference scheme.

In this chapter we want to discuss different methods of integrating the scalar equation
(3.1) 3u/at = - cau/ax, u(x,0) = e2"¥X,

which has the solution

nlea 1) = eQniw(x - ct) .

We ignore any errors due to discretization in time, i.e., we consider the differential-difference

equation
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(3.2) a—i v(x,t) = - eD_(h)v(x,t)

which has local truncation error the) .
It v(x,0) = 2™ then (10.2) has the solution

iomw(x - cl(w)t)

( 3+3) vix,t) = e
where

. _ _ sin 2mvh
(3.4) cl(w) =c ¢

The phase error, & is
(3.5) el(v) = onwt(c - cl(v)) .

A fourth order approximation is

2 L 1
(3.6) - vix,t) = - c(-3- Do(h) -3 D°(2h))v(x,t,) 5
If, as before, v(x,0) = eiQﬂvx, then (3.6) has the solution

i2mw(x - c2(w)t)
(3.7) vix,t) = e
where
- (8 sin 2nwh - sin Uwwh

(3.8) c2(w) el e e
The phase error, s is
(3.9) e (w) = 2mit(c - c,(w)) .

We now look for conditions such that the solutions (3.3) and (3.7) satisfy

(3.10) el(w) <e,
(3.11) ee(w) <e,
for 0 < e; < % and 0 <t < ;% + J denotes the number of periods we want to compute in time. It is

eagily seen from (3.4), (3.5), (3.8), and (3.9) that e and e, are increasing functions of t. There-

fore, (3.10) and (3.11) are satisfied for 0 < t < :% if we choose N = (x'.'h)-l such that

(3.12) el(v’j) = 2n5(1 - si;ﬁ(iWZN!) -2

and

oni(1 - 8 sin (2w/N;?;/§in (hulﬂl) S & o

(3.13) epl¥23)

N denotes the number of points per wave length.
We develop the left hand sides of (3.12) and (3.13) in power series in (2x/N) and retain only the
terms of lowest order. Then we have

-2
1

(3.14) e, (3,N)) - (—2'6')- JN
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and

5
. (2n)” . -4
(3.15) e,(3,N,) ~ =55 9N, .

Consider Nl and N2 as functions of j. Let e be the maximum phase error allowed. Utilizing

(3.14) and (3.15) we have

(3.16) Nl(j) - 2n(2w/6e)1/251/2
and
(3.17) Nz(j) = 2w(2w/30e)1/h51/h .

A similar computation for the sixth order scheme

(3.18) v, = - (3D (n) - 2D (2n) + 55 D (30))v(t)
yields
(3.19)  m,(§) - 2n(r2n/71e) 656

If e = 0.1 then

N (§) - 205172
. .1/k
NZ(J) = 7,]1/ »

1/6

N3(J) = 59 »
and if e = 0.1 then
n(5) - 6uit/?

Ngj)~1ﬁ1” 1

N(§) = g1/6
Observe that the operation count of the sixth order method is approximately 3/2 times that of the
fourth order method. The fourth order method has approximately twice the operation count of the second
order method. The table above clearly illustrates the superiority of the fourth and sixthorder schemes
over the second order scheme. The superiority is much more pronounced for smaller errors. However, con-
sidering the additional effort the sixth order method requires over the fourth order method the table
above illustrates that little or nothing is gained by using the sixth order scheme, as long as we allow

an error of 1% and the integrations are not over extremely long time intervals, which is natural for

many practical calculations. The superiority of the higher order methods is even greater when the
camputations are extended over long time intervals since Nl grows like 51/2, N2 like jllh, and
.1/6

N3 like j ' . Thus, for long integrations the sixth order method is more econamical but the saving is
small.

We now consider even higher order approximations to the differential operator 9/3x. Let us now
approximate the problem (3.1) by

v 2mwx
3

Ey il cD[an](h)v, v(x,0) = et

where

m V(m?)?
v=




When m =1, 2, 3 we have the second, fourth, and sixth order schemes discussed earlier. As before we
let N, = (wh)-l denote the number of points per wavelength and j = cwt the number of periods to be
computed. In this case it can be shown, Kreiss and Oliger [ 3], that Nan(j) + 2 as 2m + =, Thus we

must always have at least 2 points per wavelength.

Observe that the amount of work the above 2m th order method requires is approximately m times
the work of the second order scheme. In light of (3.18) it is doubtful that difference methods of order
greater than six have any practical advantage for practical calculations.

There is another method for increasing the order of accuracy, namely Richardson extrapolation. The
basis for Richardson extrapolation is that the solution of (3.2) can be expanded in a series
(3.26) ( 2 : B

g vix,t) = v(x,t,h) = u(x,t) + h wl(x,t) + h wz(x,t) + h w3(x,t) & 535
where the wj(x,t) are the solutions of certain inhamogenous equations:
dw./3t - cdw./3x. + r.(x), w.(x,0) =0 .
J R G TR

Let us determinethe Vs Substituting (3.26) into (3.2) yields

du/at + hzawl/at + hhawalat + ...

(3.27) = - c(Dou + h%owl + hhwe +...) .
2 I
Dou = 3u/ax + % 33u/3x3 + l;—, E)su/E)x5 + ...

and the corresponding expansions hold for the wj(x,t). Introducing these expressions into (3.27) gives

us, after collecting terms in powers of h,

3w v
N LS 33,7353
3% ety 3"u/3x”,
3w v
5 3 3

aRRES bl AR R AR
3w aw

- & .7 T _e .5 5 ¢ .3 3
s - ¢33 -7 3 u/dIx - 57 Bwllax -3 8w2/3x

u = e2M(X = ct) 4 therefore v, is the solution of

) o(eniw)3 oni
3Vl/at = - ¢ a_xl _c 2;}&) elew(x . Ct)

vl(x,O) = 0,

i.e.,

wl(x,t) o c(2‘;:;.m)3 q . e2rrim(x - ct) )
Correspondingly we get

c 5 2riu(x - ct) L2wiw)6 s & 2riw(x - ct)
wolx,t) = = (2viw)” = t « e + + - e
2 5 e 3062
2 .8 2 3 . 1\9 3 :
o (e N c(eriw) 17 c (2riw) i3 2rin(x - ct)
w3(x,t) (- T (2niw) t + 3T 59 3T, 3T 3T Je

Let us campute v(x,t) = v(x,t,h) for a specific h, and then also for 2h0. We get

v(x,t,2h0) = u(x,t) + hhﬁwl(x.t) + 16h:v2(x,t) + ...
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and therefore,

u(x,t) = % (hv(x,t,ho) - v(x,t,2h09 + hhgwg(x,t) +oeee .

Thus, if we neglect higher order terms, we have after j periods in time

2

. 2 -
ulx,t) - 3 (hv(x.t.ho) - v(x.t,2h0>)l= hh"lw2<x,t)l =k ("il)h ’ in!:é“]— ’

where N is defined as before. Corresponding to equation (3.17) we have

1/2 /4, 172 o

N=2r- (2n) (1/12e)

Thus the improvement over the original leap-frog method (see equation (3.16)) is not so impressive for the
10% error limit but is substantial for the 1% error limit. In any case, the fourth order method (3.18) is
better.

One can of course also compute v(x,t,h) for h = 3h0 . Then we can also eliminate the hh term in
(3.26) and obtain
/2

2.9jl for a 10% error

/2

19.0j1 for a 1% error

Thus not much is gained. The fourth order method (3.18) is again better.
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II1I. Initial boundary value problems for hyperbolic partial differential equations.

III.1. Differential equations in one space dimension.

The simples hyperbolic differential equation is given by

(1.1) /3t = ¢ 3u/ax,
where ¢ is a constant. Its general solution is

u{x,t) = F(x+ct),

423

i.e., it is constant along the "characteristic lines" x + ct = const. (see fig. l.). Therefore, if we

wvant to determine

ha(1,t)=g(t)
:
E u(0,t )=g(t)
-0 u(x,0)=r(x) xll e x=o U(x,0)=f(x) :1 x
fig. 1.

the solution of (1.1) in the region 0 < x <1, t > 0 we have to describe initial conditions

{1.2) u(x,0) = £f(x) ,
for t = 0 and boundary conditions
(2.3) u(l,t) = g{t) if e¢>0 or wu(0,t)=g if ¢ <0,

for x = 1,0 respectively.

There is no difficulty to generalize the above results to systems

(1.4) 3ufst = A3u/ax

Here u(x,t) = (u(l)(x,t),...,u(n)(x,t))' denotes a vector function and A a constant n*n matrix.

Hyperbolicity implies that A can be transformed to real diagonal form, i.e., there is a nonsingular

transformation 8 such that

I\I ]
(1.5) sasts = A
0 AII
where
o ... O 841 0 + ¢
. a, .+ 0 - 0 ar+2 .
A" = <0, A =
e v o0 a D¢ s ¢ O
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are definite diagonal matrices. We can thus introduce new variables

(1.6) v = Su
and get
(1.7) av/at = A av/ax .

The last equation can also be written in partitioned form

(1.8) avllat = AI avl/ax, BvII/8t = AIIavII/ax,

where vI = (v(l),...,v(r))', vII = (v(r+l),...,v(n))'. (1.5) represents n scalar equations. Therefore
we can write down its general solution:

(1.9) J”u¢)=J”umfu 3 & 1,2y0enqn,

which are constant along the characteristic lines x + ajt = const.. The solution is uniquely determined

in the damain 0 < x <1, t > 0 and can be computed explicitely if we specify initial conditions
(1.10) v(x,0) = f(x), 0<x<1,

and boundary conditions
(1.11) vn(o,t) = ROVII(O,t) + gg(t), vn(l,t) = Rlvn(l,t) + gl(t) .

Here R are rectangular matrices and By 8, are given vector functions. If we consider wave

R
0’ "1
propagation, then the boundary conditions describe how the waves are reflected at the boundary.
Nothing essentially is changed if A = A(x,t) and Rj = Rj(t) are functions of x, t. Now the

characteristics are not straight lines but the solutions of the ordinary differential equations
dx/dt = aj(x,t) .
More general systems

(1.12) av/at = Alx,t) av/ax + B(x,t)v + F(x,t) ,
can be solved by the iteration
(1.13) avl0*] 50 2 Rix,t)avl®* 1] 5y o g0

where

(] | B(x,t)v[n] +F

F
Furthermore, it is no restriction to assume that A has diagonal form. If not, we can, by a change of
dependent variebles, achieve the form (1.10).

We can therefore develop a rather complete theory for initial boundary value problems by using
characteristics. This has of course been known for a long time. The only trouble is, that this theory
cannot be easily generalized to problems in more than one space dimension. For difference approximations

it is already inadequate in one space dimension.

III.2. The energymethod.

The main tool for proving the existence of solutions in more than one space dimension consists of
"a priori estimates”. Once these estimates have been established the existence and uniqueness of solutions

follow by standard functional analytic arguments. The estimate are of the following type.
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Consider a system of partial differential equations
(2.1) du/at = P(x,t, 3/3x)u

in a8 domain N with initial conditions

3N
(2.2) u(x,t,) = £(x)
at some time t = ts and
boundary conditions
(2.3) R(x,t)u =0
on 31 . The problem
is called weakly well
posed if
alt ~t,)
(2.4) [lulx,t )], < Ke [hatx,t ) g
Here ||-||n denotes the usual La-norm over @I and ||~|]n p the La-norm vhich also contains all space
?

derivatives up to order p. If p = 0 then we call the problem strongly well posed.

There is a large class of problems for which the estimate (2.4) is immediate. This is the class of
problems for which P is semibounded, i.e., for every fixed t and all sufficiently smooth w which
fulfill the boundary conditions we have

(2.5) (w,2w) + (Bw,w)g < 2alfw]|2 .

Here a is some constant, independent of w. (2.5) implies for all sufficiently smooth solutions:

;at“ ||UH§ = (u,3t,u), + (u. 3u/at)y = (Pu,u)y +
2
+ (u,Pu)y < 2af|ul[g .
Therefore
u(ta-tl)
Ilu(x!t2)“95e “u(x’te)lln ~

For symmetric hyperbolic systems this theory has been developed by K.0. Friedrichs [3] . As an

example consider a first order system

m
+ § B.au/ax, = P(3/3x)u
je2 9 J

(2.6) du/at = Adu/ax,

vith congtant coefficients for t > 0 and x€ Q. Here I denotes the halfspace 0 5_x1 < o

- < xj <® , j=2,...,m. Furthermore A has the diagonalform (1.5) end the Bj are symmetric matrices.
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"N
X2
t
!
fig. 2.
For t = 0 initial values
(2.7) u(x,0) = £(x), |ltllg <=,
and for x, = 0 boundary conditions
I _ I -
(2.8) u (0,x_,t) = R, u (0,x_,t), x_ (xz,...,xm)
are given.

Partial integration gives for all sufficiently smooth w € Lz(ﬂ), which fulfill the boundary con-
ditions

(V,Pv)n + (Pv,v)n = o f v Aw/dx_ =

aq -
xl-O

f (wII)*(AII+R * AIR )vII/ _,dx .
3q o (o) xl—O -

Therefore the operator P is semibounded if Ro is such that

AT+ r*aTr >0

0 Q==
This is for example the case if IROI is sufficiently small. The disadvantage of the energy method is
that is atrick. When it works it is the most simple method to derive existence theorems. But it does not
give necessary and sufficient conditions. We shall now discuss another technique based on the Laplace
transform which gives necessary and sufficient conditions.

ITI.3. Laplace transform.

We consider again the problem (2.6) - (2.8) and assume now that the system is either symmetric or

strictly hyperbolic, i.e., the matrices A and Bj are symmetric or the eigenvalues of the symbol

m
B . 2
P(iv) = 1(Awl + jéz W Bj)’ w, real, Zlmvl $o

are all distinct and purely imaginary. Furthermore the matrix A has the form (1.5) which is obviously

no restriction.

In one space dimension the initial boundary value problem is always well posed. This is not true in
higher dimension. Already S. Agmon [2 ] has observed
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Lemma 3.1. Assume that the problem (2.6) - (2.8) has a solution of the form

m

#(x), <w_,x > = ] w.x., w. real
j=2 JdJ J

+i< >
w(x,t) - est 1<w_ X _

where
2 - T il
He(x]]° = é [o]% ax; <= .
Then the problem is ill posed.

Proof: If w(x,t) is a solution then the same is true for

wT(x,t) = et‘5t+i<w-’x->) ¢(txl)

for all real numbers <t > 0. Thus there are solutions which grow arbitrarily fast with time.
We shall now derive algebraic conditions such that there are solutions of the above form. Introducing

(3.1) into (2.1) gives us

Lemma 3.2. There is a solution of type (3.1) if and only if the eigenvalue problem

(3.1) ¢ = Ad¢/dx, + i Blw )¢ , B(w) =] By

II

ell <= . ¢%0) =Ry 4™ (0)

has an eigenvalue with Real s > 0.
(3.1) is a system of ordinary differential equations which can also be written in the form

(3.2) as/ax) =M , M =A"'(s-i B(u)) .

For M we have

Lemma 3.3. For real s > 0 the matrix M has no eigenvalues «x with Real «x = 0. The number of eigen-
values with real x < 0 is equal to r the number of boundary conditions.

Therefore the general solutions of (3.1) belonging to L, can be written as

r
(3.3) ) Aj ¢j(x)_.

J*1

Introducing (3.4) into the boundary conditions gives us a system of linear equations
= = oo t .
c(s)a 0, a=x, )

Thus we can express our results also in the following form:

Lemma 3.4. The problem (2.6) - (2.8) is not well posed if Det |[C(g)] = O for some s with real s > O.
The main result of this section is (see [7] , [14] , [13]).

Theorem 3.1. Assume that Det |C(s)| # 0 for Real > 0 then the problem is strongly well posed.
There is still the boundary case that Det |C(s)| = O for some s = if, £ real. As R. Hersch [5] has
shown these are weakly well posed problems. The main trouble is that the generalization of these boundary

cases to variable coefficients is very difficult.

III.4. Problems with variable coefficients in general domains.

Now we consider systems (2.6) - (2.8) with variable coefficients in a general domain @ x (0 <t < T)




4-28

Here we assume that the coefficients and the boundary 23R are sufficiently smooth. Connected with this
problem there is a set of halfplan problems which we get in the following way: Let Po = (xo,to) &

M x (0<t <T) bea boundary point and let x = S(x), t =¢ - t, with S(xo) =0 be a smooth trans-
formation which locally transforms the boundary into the halfplan x, = 0. Apply this transformation to
the differential equations and the boundary conditions, freeze the coefficients at X =f = 0 and con-

sider the halfplan problem with constant coefficients. Then we have

Theorem 4.1. Assume that for all these halfplan problems the conditions of section 2 hold, i.e., that
all the operators connected with the halfplan problems are semibounded. Then the original problem is

strongly well posed. (see [3].)

Theorem 4.2. If the system (2.6) is strictly hyperbolic and if for all the halfplan problems with
frozen coefficients the determinant condition of theorem 3.1 is fulfilled then the original problem is
strongly well posed. (see [71, [14], [13].)

Remarks. 1) It is not known whether the determinant condition garantees wellposedness for symmetric
systems which are not strictly hyperbolic. This is a rather disturbing gap in the theory.

2) Quite & lot of progress has been made for the boundary case that Det |C(s)| = 0 for some
8 = if, £ real. The key is to consider not only the halfplan problem for 3u/3t = Pu but also all per-
turbed problems 3du/dt = Pu + Bu where B is a constant matrix.

3) It is assumed that A is nonsingular. However, progress has been made also for the singular
case. (see [12].)

4) If the boundary is not smooth then new serious problems arise. See for example [10], [11].

III.5. Difference approximations in one space dimension.

We start with an example which explains most of our difficulties. Consider the differential equation
(5.1) du/at = du/3x
in the quarter plane x > 0, t > 0 with initial values

(5.2) u(x,0) = £(x) .

From section 1 we know that no boundary conditions need to be specified for x = 0, t > 0. We want to
solve the above problem using the leap-frog scheme. For that reason we introduce & time step At > 0

and a mesh with Ax > 0 and divide the x-axis into intervals of length Ax. Using the notation

vv(t) = v(xv,t), x, = vAx, t = tu = At ,
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)
we approximate (5.1), (5.2) by
(5.3) vv(t+At) = vv(t-At) + 28t D vv(t), v =1,2,...
with initial values
(s.k) vv(O) = f(xv), vv(At) = f(xv) + At f(xv)/ax s
Here

Dovv = (Vu+1 - vv_l)/2Ax

denotes the usual centered difference operator. We assume that (5.3) is stable for the Cauchy-probelm,
i.e., 0<At/Ax<1.
It is obvious that the solution of (5.3), (5.4) is not yet uniquely determined. We must give an

additional equation for v.. For example

0
5.5) Vo= 0.

This relation is obviously not consistent. In general it will destroy the convergence. Let f(x) = 1.
Then u(x,t) = 0 and

v
v(t) =1+ (1) y (t) ,
where yv(t) is the solution of

yv(t+At) = yv(t—At) - 28t D yv(t), v=1,2,...

(5.6)
v (0) =y (at) =0,

wvith boundary conditions

(5.7) Tplt) = =p «

(5.6) and (5.7) is an approximation to the problem
aw/at = -3w/dx ,

w(x,0) =0, w(0O,t) = -1,

i.e.
0 for t < x
wix,t) =
-1 for t > x .
Therefore
1 for t < x.
vv(t) -

1 - (—l)v for t > x.

This behaviour is typical for all nondissipstive centered schemes. Therefore one needs to be very careful
vwhen overspecifying boundary conditions. The oscillation decays if the approximation is dissipative.
However, near the boundary the error is as bad and, for systems, it can be propergated into the interior
via the ingoing characteristics.

Now we replace (5.5) by an extrapolation rule

(5.8) vo(t) - 2V1(t) + vz(t) = 0.
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vhich is the same as using for v = 1 the one-sided difference formula
(5.9) v, (t4st) = v (t-at) + 25 (v (t) - v, (2)) .

. 1 1 Ax 2 1

The approximation is only useful if it is stable. If we choose

1 for ve=0
vv(O) = 5 vv(At) =0 for all v
0 for v>20

as initial values then an easy calculation shows that

[lv(e)],, = const. (t/at), ||v||, =Ilv|® ax.

This growth rate is the worst possible and one might consider the approximation to be useful. However, if

we consider (5.1) in a finite interval 0 < x <1 and add the boundary condition

(5.10) u(1l,t) = VN(t) =0 Nax = 1

for both the differential equation and the difference approximation, then there are solutions which grow

(5.11) Hv(e)[,, = const. (t/at)* ,

which is not tolerable. This behviour can be explained as follows: At the boundary x = 0 a wave is
created which grows like t/At. This wave is reflected at the boundary x = 1 and is increased by
another factor t/At when it hits the boundary x = O again, and so on.

All these difficulties can be avoided by using, instead of (5.9), the onesided approximation

v (teat) = v (t) + % (vy(t) = v (¢))
or

vl(t+At) = vl(t-At) + %’ (v2(t) S —]é-(vl(t*-At) + vl(t-At)))

One can also keep (5.8) if one replaces the leap-frog scheme by the Lax-Wendroff approximation or any
other dissipative approximation.
Let us discuss the general theory. (For details see [L4], [7], [8]). We consider general difference

approximations

(5.12) voap(t¥at) = Qv (¢)

with boundary conditions

(5.13) Bv, = 0

such that the solution is uniquely determined by the initial values

vv(O) = f\) o

The approximation is useful only if it is

1) consistent, i.e. it converges formally to the continuous problem

2) stable (weakly or strongly) which is the difference analog of wellposedness.

There is never any problem to derive consistent approximations. It is the stability which causes the
problem. Corresponding to the continuous problem there are two methods to decide whether a given method
is stable: Laplace transform and energy method.

The theory based on Laplace transform is analog to the theory for the comtinuous case. The stability
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is determined by the properties of the eigenvalue problem
(5.14) (z-Q)_ =0, B o,=0, [[6]|5 =J|6.|° ax <=
v p 0 2 bAx v :

Corresponding to lemma 3.2 we have under reasonable assumptions for Q.

Lemma 5.1. Assume that (5.14) has an eigenvalue z = z, with Izol > 1. Then the approximation is not
stable.
This condition can also be expressed as a determined condition

Det |C(zo)| = 0 for same z = z_ with |zo| 38 .

0
Then, corresponding to theorem 3.1, we have

Theorem 5.1. The approximation is strongly stable if Det |C(z)| $ 0 for |z] > 1.
Now we turn to the energy-method. Consider again the differential equation (S.1), (5.2). The problem

is well posed because there is an energy equality

(5.15) (u, 3u/3x) + (3u/dx, u) = - |u(0)|2 5

Therefore we want to construct approximations to 3/3x which have the corresponding property.
We define a discrete norm
o

- o~ »
(5.16) (u,v), = uAvax + vzr u, v, Ax.

-~ -~ »
Here u = (uo,...,ur 1)', ve (v )' denote the first r components of u,v and A=A is

yeeeaV
a positive definite rxr-matrix. I: [9] w: ;ave shown that one can construct accurate approximations Q
for which (5.16) hold. The main trouble is that the norm and the approximation near the boundary are
very complicated. This makes its generalisation to approximations in more than one space dimension on
general domains difficult. Furthermore, it is not known how to include dissipation in the construction.
However, it should be pointed out that this construction also works in more than one space dimension

provided the net follows the boundary.

I11.6. Difference approximations in more than one space dimension.

Nothing essentially new needs to be added to derive the theory of difference approximations for half-
planes because Fourier transforming the tangential variabels x_ gives us a set of one dimensional problems.
The situation becomes much more complicated if we consider general domains with smooth boundaries. Observe,
that this is not the case for the differential equations because we can always introduce a local coordinate
system, thus reducing the problem to a set of halfplane problems. This is not possible for difference
approximations. Once we have picked the net everything is fixed. D. Schdeffer [15] has tried to handle this
situation and has developed a beautiful theory.

However, its practical importance is somewhat doubtful. Let us consider a very simple example. We

want to solve the differential equation

(6.1) du/at = -3u/dx

in the two dimensional domains 2y - x < 0. The initial values are

(6.2) u(x,y,0) = f(x,y) for 2y -x<0, t =0,
and the boundary conditions are given by

(6.3) ulx,y,t) = g{x,y,t), for 2y - x=0, t>0.
We introduce gridpoints by xj = jox, y; = idy, Ax = Ay .
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Thus, there is a gridpoint on the boundary only on every second row. Now we approximate (6.1) by the

Leapfrog scheme and the boundary conditions by

v. . =g. . if 2j=1 ; v.

, * ¥, P/
i, i, 1,J i+1,) o

L+ if 2jmieL.
43,3

Here v 5 = v(iAx),jAy,t). Therefore we get two different solutions on two different meshes. As long as

the solution of the differential equation is smooth the solutions of the difference equation on these

different meshes fit together. However, if for example £ = 0 and g 2 1 then the solution of the diffe-

rential equation is a discontinuous wave propagating into the interior. Now the solutions of the

difference approximation on the different nets do not fit together.

We get osciallations in the tangential direction of the wave. There are two possible methods for

remedying the situation. 1) Add dissipation to smooth out the tangential oscillations. 2) Introduce curved

meshes which follow the boundary. The second procedure is much more accurate and should be prefered if

possible. A lot of progress has been made in this direction. See for example [1].
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ABSTRACT

The basic Lax-Richtmyer theory of the stability and convergence of linear
difference schemes is by now well established and widely known. We
discuss here some of the more demanding requirements met in practical fluid
flow calculations, including the control of non-linear instabilities,
dissipation and dispersion; the modelling of conservation properties and
the implementation of boundary conditions are also considered. The use of
the modified equation approach is studied as an alternative to the Lax-
Richtmyer theory. Finally, an error analysis for finite element methods
is given showing the high accuracy that may sometimes be achieved with the
correct treatment of non-linear terms.

NOTATION

Each notation is defined in the text where it first occurs but for convenience the more
frequently used symbols are gathered here,

Ax, At, mesh lengths in x, t; A = At/Ax
Ug, the value of U at x = jAx, t = nAt

$U. =U, ., = U, U, =0, = 3(U,,, + U.
Us = Y53 = Y54 Uy = U alUsy + U y)
8oU; = 2‘(uj+1 - Uj_l) b, = ué

<u, ¥v> = IE.! dv or z(j)Av 3..:1, vector or scalar, any dimensionality
Huf1? = <u, w

k, wave number of fourier mode

- ~ ~a

. X A
u, P, fourier transforms of variable u, operator P; (Pu) = Pu
x, 8&n eigenvalue of the amplification matrix of a difference scheme

S = sin kAx, C = cos kAx, s = sin ikAx, c = cos ikAx

1, LAX-RICHTMYER STABILITY THEORY

The equations of fluid flow for the vector of unknowns M¥(r, t) may be written in the
general form

¥+ P(w) = 0, w(r, 0) given, (1)

where the subscript t denotes partial differentiation and P is a non-linear differential
operator in the spatial variables r. A general two-level finite difference scheme may be
written similarly as

n+l

Wit o Atgi(gf’l) = W - atp (W), w® given, (2)

where E? is to approximate w at t = nAt and go, Ei are difference operators whose sum

is to approximate P, It is well-known that for !F to converge to ¥ at nAt as the t
and r meshes are Tefined it is necessary not only that P, + P, be consistent with P but

also that the difference scheme (2) be stable.

For iinear problems, the relationship between these three concepts is made precise by the
Lax Equivalence Theorem (see Lax and Richtmyer [1], Richtmyer and Morton [2]) which states
succinctly

consistency + stability <=> convergence.

Here consistency is defined in terms of the truncation error, T.E., obtained from applying
the difference scheme to the solution of the differential problem; with proper normalisation,

n+
- 1 n

y =X
T.E, & X3

+ B (™) + B (6™, (3)

The scheme (2) is said to be consistent with the equation (1) if T.E. + O wunder the mesh
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refinement. For a linear scheme, which we signify by removing the brackets from the argument
of P, stability is defined as the existence of a constant K, for which

1] = [0+ ate)™NT - aep )]0 | < k] 18°)], ~ mat <1, (W)

the relation to hold uniformly under the mesh refinement: the norm for our purposes may be taken
as the root-mean-square norm,

In effect the theory focuses all the attention on the difference scheme and the establishment
of stability. It had reached a high state of development by about 1964, Kreiss [3] had estab-
lished necessary and sufficient criteria for deciding the stability of any constant coefficient
scheme by means of fourier analysis: this completed the analysis begun by von Neumann which led
to the necessary stability condition associated with his name. Moreover Kreiss [h] had shown
for hyperbolic systems of equations how the addition of a small amount of dissipation could
maintain stability in the presence of coefficients varying smoothly with r. This in turn
opened the way for applying Strang's [5] demonstration of convergence for smooth solutions of
non-linear hyperbolic systems if the corresponding linearised difference scheme is stable,

However, this rather complete theory was already beginning to show its limitations as more

refined criteria were applied to the selection of methods, and the requirements of high accuracy
in complex situations led to more sophisticated difference schemes.

2. PRACTICAL LIMITATIONS OF THE L-R THEORY

Even in quite simple situations the dependence of the stability definition on what happens
only as At + O, is confusing and misleading. For example, the following situation arises if
the simultaneous convection and diffusion in the equation

u +au = b“xx (5)

is approximated by the scheme

n

g™t . LR . s2u” o

At Ax (ax)2
1 - 2 _ X X . - . .
where Aon = ’(Uj+l Uj-l)’ § Uj = Uj+1 2UJ + UJ—l and j labels the m;:i points The
amplification factor, giving the growth per time step of the fourier mode e , 1is
= aAt . bbat . o
x(k, ax, At) = 1 - Ay 1 sin kax - Tax)2 5im ikAx . (1)

Thus stability requires that bat < 3;(ax)2 and, if b > 0, this ensures that

2 2
2 +_8_._4£<+ﬂ_
|K| B2 ( Ax] <1 (2b At (8)
which is sufficient for I-R stability. However, for even modest values of a2/b this growth
rate is quite unacceptable in practice. As a result the more stringent definition of
"practical” stability [2] or "strict" stability [6] is often used:

9] < e* [1%°]] (9)

vhere a is the smallest constant for which ||w(t)]|]| < et |l#(0)|| applies to the differential
equation., In the present example a = O, and the condition for strict stability becomes

r= <1 (10)

aAty? _ 2bAt
G St =

which properly indicates the limited value of the scheme.

More seriously, terms which are O0(At) occur throughout the development of the L-R stability
theory for variable coefficient and non-linear problems and are properly neglected. Thus for
the simple non-linear advective equation

M uu = 0 (11)

no distinction is made in this theory between the two schemes

n+l 1 au®
n o]

N
y™tt
+ =
24t vra o (12a)

u = U 1 |,n n nyal o
and T + 3Ax[u a, U+ AO(U )] = 01 (12b)




The former, however, exhibits the non-linear instability first demonstrated by Philips [T], while
the latter largely eliminates this through its energy conservation property - see Arakawa [8] and
Morton [9 . If Uat/ax < 1, the growth rate of the linearised equations in both cases is given,
apart from terms which are O0(At), by the familiar quadratic for the leap-frog method

k2 = 1 + 2iAUSk = O, where X\ = At/Ax and S = sin kAx. Moreover, when the O0(at) terms are
included the two equations are only modified to

k2 - 1+ A(2iUs + 4,0k, =0 (13a)

2C + 1

2 s T
k2 - 1+ A(2i0s + == 8,U)c, = 0, (13b)

where U} = %{Uj 1 + Uj + Uj+l) and C = cos kAx. These are sufficient to demonstrate the well-
known leap~frog jitter: when au > 0, corresponding to a rarefaction wave, the spurious root

1
k~ -(1 - A20282)? _ jAUS grows, while the principsl root grows only when au <o. This is an

example of weak or relative instability, familiar in ordinary differential equations but more com-
plicated here because of the space dependence. But the point to note here is that equations
(13a) and (13b) do not distinguish in any important way between the two methods. To achieve
proper understanding of this situation it is best to go to & non-linear analysis [1@]. However,
in more complicated situations this may not be feasidle. Then it is encouraging to find that,

if we abandon the approach of studying the stability of the difference scheme quite separately
from the accuracy with which it approximates the differential equation, then the clear improve-
ment of (12b) over (12a) can be seen. We shall do this below in our consideration of the
"modified equation" approach.

The difficulty of the analysis necessary to apply the Lax-Richtmyer theory rigorously is the

third and final limitation that we raise against it. As an example, we consider the "donor-cell"”

scheme for the Eulerian equations of fluid flow as studied by Hirt [11], omitting the artificial
viscosity terms:

pn+1 - on _ %% 6[<on>u , (1b)
(ow)™ = (ou)® - &2 4[<(pu)™3® + 7 , (15)
(dou? + p/y=1)""" = (3pu? + p/y-1)" - £2 6[<(iou? + p/y-1)BT + T, (26)
where p, u, p are_pensity, velocity and pressure, § 1is the central difference operator

4 4 S -
6vj = "5*5 - vj-i' vj+5 = ;(wj + vj+1) and the donor-cell differencing is defined by

(17)

w. if wu. > 0
ws 1= { J J+3 =

vj*l 1£ “j*; <0.

The dependent variables we take to be p, m = pu and p, with corresponding perturbations to
p + 8p, m+ Am and p + Ap. The linearised equations for the perturbations are then obtained
in the usual way: we consider only the case where u > O everywhere and look at the terms

arising from the space differencing in the first equation. Note that E'*l = Q[(m.+1/p .*1) +
(mj/ oj)] 80 that we obtain after a little manipulation, J J J

(-3 p'-l
J=l—(am). -+ (1 - == (&m), - (8m),
P5e1 i+l o4 J J-1

.
=1 -
+ us 5 )(Ap)j uj‘Ap)j-l} :

p.
-u, . =l—(ap). . + (u,
J+l °j+1 J+1 J 3

+1

This is already fairly unmanageable unless we abandon terms which are O0(4x), and because of the
stability condition also O0(At), even though they were seen to be very useful in the previous
simple example., We then get for equation (1k)

(80)™1 = (8p)" - BL[a (am)® - Fu"62(80)7] . (18)

Carrying out a local fourier analysis on just this equation shows the stabilising erfegt_of the
last term and one might deduce that without it the system of equations would be uncogdltxoya}ly
unstable, However, Hirt claimed that if the first term were evaluated at the new time, giving

a ™1 in (14) and Ao(Am)m1 in (18), the system would be stable according to a fourier analy-
o .

sis. Presumably, this vas on the basis of a treatment of this equation in isolation from the
other two and replacing (Am)n+1 by u(Ap)n*l. Then, of course, the amplification factor
satisfies

[€]2 = 1/(2 + (uSat/ax)?) <1 . (19)
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But the coupling between the equations is important in the stability analysis and the correct
result is not so easily obtained. If all the equations are expanded as in (18), the resulting
determinantal equation for x when the donor-cell differencing of (18) is used, becomes very
complicated; so we restrict our attention here to the special case in which Ap = chp, vhen

only two equations have to be dealt with. The equation for x then becomes, with 1 = At/Ax,

1 - 22us? - ¢ -ixs
det =0, (20)
ir(u? - cg)s 1 - 22us? - 2iruS - x

This yields x = 1 - 2 us2? - iaS(u ¢ cs) and hence the stability condition

]2 = 1 - bas2{u - X[uzsz % (B % cs)zczl} <1 if (u+ c.)zx Bl
(21)

When the central difference Ao(Am)n is used instead in equation (18), the top left term in (20)

becomes 1 - x and the equation for xk becomes

(x = 1)2 + 2(x - 1)au(s? + i8) + Azsz(e§ -u) =0, (22)
+ o ~ 5
On the other hand when AO(Am)n 2 1s used, the top right term is multiplied by x and we obtain
(x - 12+ 2(c - 1)[hu(s? + i) + N282(c2 - w?2)] + A252(c2 - w2) = 0 .

(23)

The analysis of the stability conditions arising from these two equations is typical of the
practical difficulties of applying fourier analysis to systems of equations. One can, however,
see immediately that the condition

c§ > u? (2k)

is necessary to the stability of both equations: for otherwise the sum of the arguments of the

two roots for « -1 is ® or 3m, while for stability the argument of each must lie in the

open interval (n/2, 3v/2). A complete analysis shows (22) to be stable if 2¢ (u + ¢ A <uc<e
8 s’ =" —"s

and (2b) if O<bub c2(u+e)d <l or de, <2 if u=o0.

3. DISSTIPATION, DISPERSION AND CONSERVATION

Once the gross stability of the difference scheme has been assured, many other properties
need to be considered, all to do with the relationship of the scheme to the differential equation:
as we have seen even the consideration of strict stability requires this comparison to be made.
The one possible exception to this statement is the property of dissipation, This was first
defined in terms of the growth factor of a single fourier mode, a scheme being termed dissipative
if all the eigenvalues of the locally evaluated amplification matrix satisfy

e(x, k, ax, at)| <1 - o(xax)®s -r < kAx < ¥, (25)

fr some constant o > O and some positive integer s, Such a requirement was used by Kreiss DJ
in his development of the stability theory of variable coefficient hyperbolic systems, the dissi-
pation being small enough not to affect the truncation error of the schemes but sufficient to
control the instabilities generated by the variable coefficients. However, even earlier John
(12] used the same requirement on «x in demonstrating the stability of variable coefficient
parabolic equations where, for small kA&x, the property arises immediately from the consistency
of any difference scheme with a parabolic operator.

Subsequently, many suthors [13] [14] [15] [16] carried out quantitative comparisons of the
dissipation of various schemes as applied to simple model situations. Typically the advective
equation, u, + au, = 0, 1is used and the damping compared for a range of mesh ratios aAt/Ax

and for all modes spanning a reasonable number of mesh intervals, e.g. 2w/kAx > 4L, At the same
time the dispersion of the scheme may be studied by comparing arg x with the phese change

kaat = kax(apt/ax) produced by the differential equation in one time step. Notice that these
errors may be regarded as arising more or less directly from the fourier.transform of the trunca-
tion error defined in (3)., For, in that notation, but for a scalar variable,

£ A & . ikat ik
k= (1- AtPo)/(l + AtPl) and substituting u = e e'** ve have
‘ - fal
A Atpl)'.At.(T.E.) c (26)

These studies clearly show, for example, the severe dissipation associated with the upw%nd
differencing scheme, the dominant phase lag error in the Lax=Wendroff scheme and the attractive
properties of the leap~frog scheme. They have stimulated the development of more accurate one
dimensional schemes of third and fourth order which are becoming increasingly important in
praetical fluid flow calculations., Apart from Fromm [15], however, much less study has been
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given to these phenomena in several dimensions and a good deal more probably remains to be
learned this way in that case.

Though they provide important guide lines in the choice of methods, not all of the results of
these studies of dissipation and dispersion can be immediately transferred to more realistic
situations. Moreover, the presence of non-linear terms requires a much greater choice of differ-
ence schene to be made; for example, in equation {11) should one replace uu_ by the difference

Us U as in (12a) or combine this in some way with BAOU2 as in (12b)? Also, in a system of

equations one has to make the choice of dependent variables and the mesh that each of them should
be regarded as centred at, However, the use of fourier modes is still helpful in analysing the
errors involved and, in particular, the phenomenon of aliasing, i.e. the tendency of a finite grid
representation to confuse the modes created by non-linear interactioms.

Suppose that over a grid of 2J + 1 equally spaced points, mesh functions u and Vv are
expanded as
s ikjax * ikjax
= . =

5T ko%e 0 T kone R
where the sums run over kax = 0, #wx/J, #2v/J, ..., #(J = 1)%/J, tx. Now if u and v were
considered as continuous functions of the continuous variable x = jAx and substituted
into (uv)x, wve get

A g itx
{uv) = Z 1 2 tu v, et » (28)
D PR AN

wvhere 2Ax may now span (-2w, 2%). The higher frequencies are unrepresentable on the mesh and
vhen a mesh approximation to vu is calculated they appear, shifted by 2w, in the original

frequency range; this is aliasing., Thus we get the following if we substitute the mesh
functions into (quv 3 vAou)/Ax

u.A V. * V.A U, o m o
o ° (i -1, . . igjax
=7 iy (ax)""(sin kax + sin k'ax)u v .]e
(WL vy "k
k+k'=1+27/8x (29)

By comparing the coefficients of W Vi in the two expansions, one may obtain very detailed

AX

information on the errors arising from the aliasing and the finite difference operators. This
has been done for a number of approximations to the shallow water equations in two dimensions by
Grammeltvedt [17].

Apart from its handling of fourier modes, the other broad area in which a difference scheme
is compared with its differential system concerns its conservation properties. The equations of
fluid flow are basically conservation equations for mass, momentum and energy. If they are

written in this conservation form, . V.f(w) = 0, Vvefore derivatives are replaced by divided

differences then when a sum is taken over all the mesh points the differences cancel except at
the boundaries and the conservation properties are correctly modelled by the mesh sums of the
variables. This often gives improved accuracy, especially in situations like shocked flows
where the integral conservation laws are very important, and there is some indication that con-
servation of the lower velocity moments is most important: thus one should always aim to con-
serve mass, while the total energy may not be an appropriate variable to work with.

More generally, one may attempt to model any conservation property of the differential
system involving functions of the dependent variables [9]. Most commonly these are quadratic
functions representing energy or vorticity squared as in the well-known schemes of Arakawa [8].
While fourier analysis is essentially a means of analysing a scheme once it has been proposed,
these conservation arguments are key elements in motivating the design of new schemes.

A general technique for carrying out this process congists of first writing out the details
of the manipulation of the differential equation leading to the establishment of the conserva-
tion property. Then difference replacements are made for all the differential operators in
such a way that the identities used are carried over into their discrete counterparts. The
essential operation is usually integration-by-parts or use of Gauss' Theorem and the difference
operators are therefore chosen to satisfy summation-by-parts formulae. Consider the simple
advection equation (11). Premultiplication by u and integration with respect to x leads to

d
Ellu”z = =<u, uux> e <;(u2)x. u> .
Hence the correct combination of the equivalent forms uu  and !(uz)x leads to

Slull? = - Seu, wu ¢ (w) > =0, (30)
and the adoption of the energy conserving scheme (12b) for this equation. Useful basic differ-
ence operators in these manipulations are the central difference & and average u: 6 has
adjoint -6 and p is self-adjoint with respect to an inner product <u, v> in which each
argument is on a mesh staggered half a step with respect to the other, In one dimension this
usually means that u and & appear in the combination ué = s, s in (12b) so that only one

mesh is involved. But in two dimensions it is often a great advantage to replace 3/3x by
uny and 3/3y by uxéy and use one mesh consisting of the centres of the squares formed by
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the other - see Morton [18].

Grammeltvedt's [17] paper is largely devoted to a study of the advantages of these con-
servation properties. Broadly, he finds that the quadratically conserving or energy conserv-
ing schemes are more stable but increased stability is to some extent paid for by worse phase
errors. See also Roache [19] for further references to studies of these and other phenomena.
It is worth noting that Torrance et al [20] found that conservation was a more important
property than the order of accuracy of the truneation error.

L. THE MODIFIED EQUATION APPROACH

We have shown in the previous two sections the need to study truncation error and accuracy
in conjunction with stability, The tendency to separate the two aspects arose essentially from
the Lax-Richtmyer theory of stability and convergence and an alternative approach, based on the
"modified equation”, has recently attracted increased attention, The technique is usually
attributed to Hirt tll] but similar ideas have been widely used (see, e.g. Ref. [2] pp. 331-2),
It has been put on a more methodical basis by Warming and Hyett [21], vho considered linear
equations and compared the approach to the L-R theory in a number of model problems,

More generally, let us write the (non-linear) differential and difference equations for
u and U respectively as

L({u) =0 , L(u)y=0. (31)

Then the L~R theory defines the truncation error TA(u) by substitution of u into the differ-

ence scheme, evaluates it by Taylor expansion and considers
L,(u) - LA(U) = TA(u) (32)

as an equation for u - U : the homogeneous equation is used to study stability and the inhomo-
geneous equation to study accuracy and convergence. The alternative approach is to extend U
to be a function with an infinite Taylor series expansion and to find a modified differential
equation which it satisfies, by substitution of this expension into the difference scheme.
Corresponding to (32), we obtain

L(u) = L(U) = T(U) (33)

as the main object of study., lote that before any manipulations are made to simplify
TA(u) and T(U) they are formally identical expressions

TA(u) = LA(u) - L(u) , T(U) = LA(U) - L(u) . (3%)

However, in the L-R theory the equation L{u) = O must be used to simplify TA(u), while in
the modified equation approach the equation LA(U) = 0, or equivalently L(U) + T(U) = O, must

be used to obtain an equation of the form required.

The immediate advantage of using (33) is that one is working with differential rather than
difference operators: this is convenient with linear equations but the advantage becomes
progressively greater as one considers first linear perturbations of a non-linear eguation and

then the full non-linear equation. Consider the linear equation vy & Pu = 0. This leads to

a vell-posed initial-value problem if P is semi-bounded, that is, <u, Puw> > —a||u||? for
some a > 0, for then ||u||? can only grow like e®'. Hence when the stability of the
difference scheme is considered with the equation Ut + PU + T(U) = 0, establishment of

<P(U), U> > -g||U||? will yield stability. Moreover, some of this approach can be extended
to non-linear equations: if <P(u) - P(U), u - U> > -a||u - U||2, P is called monotone and
leads to a well-posed problem. As an example, let us return to the advective equation (11).
With ¢ = u - U we have

Lllell? + deu - v, (w2) - (V2) > = <c, T(UD> ,

i.e. %€||c||z + de2, (u+ U) > = <, T(U)> (35)

after two integrations by parts. The inner product on the left is positive definite when
{u + U)x > 0 everywhere so that the operator P is monotone then, expressing the fact that

the advection equation (11) is well-posed for rarefaction waves. For the non-linear stability
of a difference scheme one needs to study the monotoricity of T(U) and, for convergence, the
inner product <u - U, T(U)>: for scheme (12a) the coefficient of (Ax)2/6 in T(U) is
—quxx vhile for (12b) it is —(UUxxx » ZUxex); thus the fact that the inner product of U

with the second expression is obviously zero, while not that with the first, is encouraging
though the details of the implication have yet to be established.

However, greatest use of the modified equations has so far been made to study dissipation
and dispersion properties and to obtain "heuristic" stability criteria. For linear equations,




Warming and Hyett advocate the systematic replacement of all time differentials in the expression

for T(U). Thus for u *+ Pu=0, @& difference scheme vill give U, + PU + T(U) = 0 and

repeated substitution of this and its derivatives to eliminate all time derivatives in T(U)
yields the form

U+ PU=QU, (36)

where both P and Q are space differential operators: Q will be an infinite power series in
At, Ax and, for instance, for the Lax~Wendroff scheme in one dimension applied to the model
problem u, i au_ = (0]

2
- %— srf(ax)? - a?(at)u  + .o .

QU = - %[(Ax)2 - a2(at)?]u

XXX
(37)

From the leading even order derivative one obtains the heuristic stability condition [a[at < ax
by requiring that this term should not give negative dissipation, i.e. lead to ill-posedness of
the solution. Similarly, the leading odd order derivative gives some measure of the dispersion
in the scheme, Note that the leading few terms in Q are the same as if Ut + PU = 0 were used

to carry out the substitution for the time differentials: thus these will be the same as in a
conventional approach but beyond & number of terms, determined by the order of accuracy of the
scheme, differences will occur.

Hirt [ll] in the same way obtains the left inequality in the condition (10) needed to obviate
the weak instability in the mixed advection and diffusion equation (5) approximated by (6). How-
ever, in general, complete stability conditions cannot be obtained by looking at the leading term
in QU, and the whole series must be considered. Warming and Hyett overcome this to some extent

by appealing to the form of the fourier transform Q of Q regarded as a function of
s = sin 3kAx. But then, as ther point out, this amounts to considering the amplification factor
of the [-K theory and their &nalysis could be just as readily applied to that,

It would seem that with this approach one should not try to follow the analysis of the L-R
theory but instead exploit the differential equation theory at one's disposal. Thus in consider-
ing provlem (5), (6) Hirt did not immediately eliminate the time differentials: his leading terms

in T{(U) then gave him a hyperbolic equation with a wave speed of (2b/At); and use of the
Courant-Friedrichs-Lewy condition on that yielded the second part of the inequality in (10). 1In
the same paper he studied the terms in T(U) up to fourth order for the difference scheme (14)-
(16) and various replacements for (1h4): the instabilities found in numerical experiments were
then attributed to various differences in these terms between the schemes., Similarly, Lerat

and Peyret [é? have studied a general class of predictor-corrector methods for the gas dynamic
equations which generalise the two-step Lax-Wendroff scheme. fThey obtained the leading terms in
T(U) and then compared their dissipative and dispersive effects along the characteristics of

the original equations, In this way they were able to make specific choices of 'best' schemes
for particular problems, the validity of which was confirmed by numerical experiment.

5. BOUNDARY CONDITIONS

In the foregoing we have ignored all effects of boundaries in order to keep the arguments as
simple as possible. But in practice the best treatment of boundary conditions is one of the more
difficult judgements to make and a poor choice can lead to inaccuracies and instabilities. The
difficulties start with the differential equations where the proper boundary conditions are still
not always known: recent advances here have been made by H.O. Kreiss who will be speaking on this
topic, and the associated results for difference schemes, in this lecture series. The problem is
compounded in the difference schemes where quite often extra boundary conditions are needed
because the schemes are uf higher order than the differential equation, e.g. in the use of the
Lax=Wendroff or leap=-frog methods for a first order hyperbolic equation.,

Understanding of the resulting effects is again most completely achieved by a modal analysis
like the fourier analysis used in the interior, Godunov and Ryabenkii [?3] first gave necessary
stability conditions for one-dimensional problems by considering modes of the form ul o~ znuJ.
where |u| <1 and j counts mesh points away from the boundary. Kreiss [2h] has greatly
refined the approach giving only mildly stricter conditions which are sufficient for stability
and recently has achieved the major step of extending the theory to plane boundaries in multi-
dimensional problems. However, as might be expected, the analysis is in general even more awe-
some than that for the interior although some important simple cases have novw been studied in
detail [25]. Hdoreover, in practical problems curved and angled boundaries provide much of the
interest as well as raising many more problems regarding how they should be approximated. Taus
one looks to carefully controlled numerical experiments for information on the stability and
accuracy of boundary approximations. Abbet [gb] has studied the behaviour of some twenty-five
schemes as applied to supersonic steady flows and Chu and Sereny [27 have cconducted similar
experiments in one-dimensional time-dependent flows. (See Roache 19] for further references.)
The conclusion is overwhelming, though not of course unexpected, that due account should be
taken of the characteristics of the differential system and the combinations of dependent
variables carried along them. Full use of the characteristics entails calculating all those
carrying information to or from the boundary and using interpolation on the mesh to approximate
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their effect. To do this explicitly can be a lengthy procedure which is why simpler methods are
called for; however, it seems from Abbet's results that the performance of a method is heavily
dependent on how closely it is related to this basic procedure, Apart from this, both papers
find that simple extrapolation performs reasonably well in most cases and much better than
formally more accurate extrapolation methods. It is also noteworthy then that & nev method
which Abbet proposes and which is both accurate and fast combines an explicit extrapolating
predictor step with a simple wave corrector step.

Chu and Sereny attempt to correlate their results by reference to a simple analytical test
similar to those of dispersion and dissipation discussed earlier for the interior schemes,
Slightly modified and applied to the wave equation

ut +v =0 r=u+ve=const, on t - x = const.
* (38)
vt + ux =0 S ®ue-vVv®=const, On t + x = const.

it consists of reflecting the plane wvave s = - exp[ik(t + x)] at the boundary x = 0, where
the condition u = O is imposed., Assuming that up to t = O, the correct reflected wave

r= exp[ik(t - x)] has been produced, we calculate rl, the reflected wave at x = 0, t = At
produced by the scheme under test and compare it with elkAt. For three typical simple schemes
for imposing a boundary condition on v when the Lax-Wendroff method is used in the interior,
one has the following results,

1
Scheme g
ikat
Exact e L
. ik,
Characteristic method 1 =2 +)e i
ntl n n . n
Vo -V ul-uo
One-sided first order: ——— 4 =0 1 + iAS
"t Ax
First order extrapolation: Vo= Yy C + iAS[i + (1 - A)q]

This shows clearly the origin of the overshooting experienced with the one-sided scheme and the
attractions of the extrapolation procedure - while never amplified, for X = 1 it is exact,
like the characteristic method.

Besides the use of characteristics, analytical guide lines on the choice of boundary condi-
tions are obtained by consideration of conservation properties. When the equations are differ-
enced in conservation form using & "control volume" or “donor-cell" technique, the layout of
variables on the mesh and the imposition of boundary conditions becomes strongly motivated - see
Roache [19] for many examples. As a simple case, suppose that 3af(u)/3x in a conservation law
is being approximated: if a one-sided difference (!“i+1 - rj)/Ax is used the boundary terms
vill be fJ. fo and physical boundary conditions should be imposed at mesh points; but if the
central difference Aofj is used boundary terms will be (fJ + fJ 1)/2, (fo + fl)/2 and the

conditions imposed at the mid-points, Further guidance, particularly for non-physical boundary
conditions, comes when conservation of quadratic quantities is attempted: the summation-by-
parts manipulations entailed in establishing conservation lead to specific boundary terms whose
behaviour must be controlled by imposition of appropriate boundary conditions.

€. ERROR ANALYSIS IN EVOLUTIONARY FINITE ELEMENT PROBLEMS

Finite element methods ure becoming increasingly popular for fluid flow problems (28].
Their behaviour in steady state situations is now well understood but, for evolutionary problems,
optimal procedures and their analysis are only beginning to be developed. We conclude then with
an analysis of the errors induced by approximeting the non-linear term u3v/3x in various ways,
as developed by Cullen [?9, 30] for integration of the shallow water equations.

Suppose the solution u of wu_ = Lu, u(t = 0) = u® is to be approximated by U from a

t
space Sh, spanned by the basis functions ¢j(x). i.e,

u™(x) = z(j)ug¢j(x), n=0,1, 2, .. (39)

approximates u(x, nAt). Introduce the projection operator P from the solution space into Sh:

(Pu)(x) = Z(j)ujoj(x) <Pu, ¢,> = <u, ¢, >,V k . (k0)

Then the generation of U can be considered in three parts: first the initial data is approx-
imated in Sh by e = Pu®; then the spacial operator L 1is approximated by an operator

-
b B Sh -+ sh; and thirdly the time integration is approximated by an appropriate quadrature




formula, Standard practice is to take L = PL, so that if the leap-frog method is used we
obtain

(2at) Y (U™ - u™ Yy = pL®, 0° = Pu° ; (41)
i.ee (2ae) (U™ - UM = g, m% = g e) (42)

where we denote by U the vector {Uj} and M and K ware the mass and stiffness matrices
o . X {.. <$. P
My = <bgs 857, Kioo= <op, Lo

The errors committed in the approximation cen be distinguished in a corresponding manner,
The last, & simple quadrature error, will be set aside for this discussion. Then, using an
Euler method integration with a sufficiently small time step, the true solution at time nAt
)n uO

is given by u(ndt) = (I + At L , vwhile the approximation is given by

U™ = (1« atL)? P° .
Writing A for I + AtL and B for I + atl, the difference can be resolved as

(A" - B7%)uC = ((A" - PA®) + (PA - EP)A™ ) + B(PA - BP)AT"C 4+

vee B°2(PA - BP)A + B M(PA - BP)WC .

That is,

n-1 -
u(nat) = U™ = (I - Plu(nat) + at § (I + aclL)
s=0

n=5=l(pL - LP)u(sat) .

(43)
Thus the error is made up of a final projection error ana an accumulated evolutionary error,

The former is estimated by straightforward approximation theory - if " contains all polynamials

of degree up to (u - 1), then in general the error will be O(h*). The latter is the key
object of our analysis and can be helpfully visualised as the difference between the two routes in
the diagram:

u > Pu

2 } i

o
ILPudt

P
JLudt —_ J PLudt.

If L 1is an operator of order m, the usual error estimate for (PL - LP)u will be o(n* ™.

-~
But for some choices of S" and L it can be as small as O(hgu) - see Thomée [31], Wendroff
[32] and cullen [30].

Suppose L = 3/3x and a uniform mesh is used with spline functions of order yu as basis
functions (that is, piecewise polynomials of degree u - 1 vithncontinuous derivatives up to
order u - 2). Then Thomée showed that the nodal parameters Uj are related by what can be

regarded as a finite difference formula and that its truncation error was 0(h2u). Cullen
identified this as the error (PL - PLP)u and thus 4as able to obtain the same result for a
vider class of differential equations, including non-linear ones.

Special interest attaches to the case of linear splines (u = 2). Recause of the uniform

mesh, fourier eanalysis may be used so we take u = ue’®**. Then we nave in (L0}
¢j(x) = ¢(x/h - j) and
1+ x, -1<x<0
¢(x) = (LL)
1 - x, O<x<1.
Now <05 eR%, o I@(x/h - 3)e**%ax = nel?%4(g), vhere £ = kn.

lence, using the familiar mass matrix for linear elements, the nodal parameters ;s satisfy
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§iVing u., = ua(g)exp(ijg), where a(g)

" . o
gkuj-l + huj + uj+1) = hue1J5¢(g) , (45)

3¢(€)/(2 + cos £). A simple computation gives

o) = (2671 sin $€)2 so that

When L = 3/3x, Lu

iNE .

. (v 2
uj/ue = alg) = g\%z +C:is é ~ 1+ %5 as [ -+ 0 . (46)

= jku so we have immediately

PLu = ix&z(&) X(j)e135¢jtx) 5 (u7)

The familiar Galerkin equations for v = PL(Pu) give

u, . - u.
B, L - :
6(Vj—l + hvj + vj+l) 5 {L8)

whence Ja iks(g)uj and

Thus we have

__3sing . _ £ .
glg) = ET3—7_33§_ET 1-355 8s £€+0. (L9)
PLPu = ikua(£)8(E) 2(j)el']£¢jkx) (50)

and comparison with (L7) shows the error to be O0(&“) = O(h"). Notice how the O(h2) error
arising from the projection, and expressed by the difference of af(f) from unity, is eliminated
as a common factor: the crucial error, expressed by the difference of 8(g£) from unity, could
have been calculated simply from the finite difference equation (48).

Now consider the problem when Lu = udu/dx. The usual Galerkin approach essentially
approximates the equatdion v = udu/3x for the time derivative in one step by substituting
u = Eu-Q. into both parts of the product, In experiments on the shallow water equations with

linearJeiements, Cullen found the accuracy most disappointing. The trouble is that the deriva-
tive of the linear approximation is piecewise constant and not even in the space S", let alone

being the best approximation in Sh. The solution was to solve the equation in two parts,
du
V = = =
3% ° W uv (51)
using Galerkin at each stage separately. Thus L = L2Ll where Ll represents calculation

of the derivative and L2 the product with u. This is replaced by E 2 L2(PL1), so we have

PLu - LPu = {PLQ(Llu) = f,zP(Llu)] + [EE(PLlu) = Ea(PLlPu)] - (52)

the non-linearity of the operator [ _[. preventing common factors from being separated out. It
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is clear, however, that carrying out the product operation to 4th order will give an overall
Lth order evolutionary error.

An analysis of three ways of constructing approximations to udv/3x using linear elements

and with u = u exp(igx/h), v = v exp(inx/h) yields the following results: as with (47) we have

p(u%) = uv(in/h)alg * n) Z;ei“"“)%(x) . (53)

(i) Single stage Galerkin results in an extra facter

u(E)a(n){%sin n+ %Sin(£+n) - %sin é]
Yl(E'n) = EH[T-' COS(E‘*H)]/(E*n)Z

icew v (g,n)~ 1+ (2630 - 76202 - Bgnd - bn*)/T20, (54)

which reduces to 1 - 17t4/720 when £ = n,

(ii) Two stage Galerkin has an extra factor

[3+ %(cos £ + cos n + cos(g+n))]
2(1 - cos(g+n)]/(E+n)?

Y,(E4n) = a(g)al(n)eln)

ice. vy(g,m) ~ 1+ (2630 + 3202 + 2603 - bn*)/T20, (55)

reducing to

1 - 3£%/720 when £ = n.




{(iii) Galerkin folloved by nodal point multiplication has the corresponding factor

a(gla(n) n
alg + n) 1-42. (56)
The last is very easy to implement but is only 2nd order accurate and very poor in practice,
Both of the others are Lth order and although the coefficients in (54) and (55) do not seem very

different, presumably the factor of nearly six improvement in the two-stage process when £ = n
is the basis of its superior performance in practice when used on u.Vu.
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Summary

Numerical methods for the solution of the Navier-Stokes equations
for compressible fluids are discussed. A short review of the Navier-Stokes
equations and of their qualitative mathematical properties, and a discus-
sion of their interest in aerodynamics probiems are first presented. Then
the following aspects of numerical methods are considered : limitation
of the domain of calculation and boundary conditions on the outer
boundary; various approaches in finite-difference methods and properties
of some representative schemes; treatment of the boundary condition at
a solid wall; treatment of shock waves and general considerations on
sccuracy and computation times.

1. Introduction

The considerable development of numerical methods in aerodynamics
in the past twenty years has mostly concerned boundary layer problems
and inviscid flow problems, that is to say the two fundamental approxi-
mations of fluid mechanics for the description of large Reynolds number
flows. As numerical methods became currently used for these two classes
of flows, and as problems of increasing complexity were considered, a
greater attention was given to the shortcomings of these approximatlons.
The numerical solution of the full Navier-Stokes equations is now taken
into consideration as a means of predicting flow fields for problems of
practical interest, although it is obviously too costly at this time to be
accepted as an englneer’s tool.

Besides early fundamental work on Burgers equation, one-dimen-
sional flows and low Reynolds number flows, the first applications of
numerical methods to the Navier-Stokes equations for compressible flows
seem to have been motivated by atmospheric reentry problems, i.e.
essentially the blunt body problem and the base flow problem, which
Involve low density, moderate Reynolds number flows. Progress in nume-
rical analysis and in computer performances allowed the computation of
flows at increasing Reynolds numbers, and the most recent studies are
concerned with such difficult problems as shock-boundary layer interaction
in the turbulent regime.

The purpose of this paper is to discuss the problems arising in the
numerical solution of the Navier-Stokes equations for compressible fluids
and to present some of the numerical schemes used. We shall consider
only finite-difference methods based on the unsteady equations of maotion,
which, at this time, are the most currently used. It is also for this class
of methods that the difference between the compressible and the incom-
pressible cases Is the most marked because of the different nature of
the continuity equation in the two cases.

After a short review of the Navier-Stokes equations and of their
qualitative mathematical properties in section 2, the interest of these
equations for aerodynamics is discussed in section 3. The problem of the
definition of the computation domain is considered in section 4. Various
representative finitedifference schemes are presented in section 5, and the
problems of the numerical treatments of boundary conditions at a wall

France

and of shock waves are considered in sections 6 and 7 respectively.
Some questions relating to accuracy and computer time are discussed
in section 8, and a list of works grouped according to different types
of problems is given in section 9.

2. The Navier-Stokes equations

The general motion of a non reacting fluid with respect to a
Galilean frame of reference is governed by the following partial diffe-
rential equations which express the fundamental principles of classical
mechanics and thermodynamics for mass conservation (eq. 2.1), momen-
tum change (eq. 2.2} and energy change (eq. 2.3) in a continuous
medium :

_QP_QJIIV{(V}:O

en <
22) a_‘)t.((V},div (VW _q )= f,
23) %(’ef),&v(‘cfv-gf/’,i).f:.i.

In these equations, t is the time, P the density, V the fluid

velocity, and £ the total specitic energy : £z € + 7'/2

e is the specific ime_LnaI energy; _0' is the stress tensor, 7 is the
heat flux vector, and ﬁ. is the external force per unit volume.

where

Equations (2.1} to {2.3} are said to correspond to the Eulerian
description of the fluild motion : flow properties are defined as functions
of time and of space coordinates in the frame of reference. An alterna-
tive description is provided by the Lagrangian formulation in which one
considers properties of fluid particles followed in their motion : flow
properties are defined as functions of time and of parameters used to
identify fluid particles (usually the coordinates of the particle at some
initial time). The Lagrangian formulation can be useful for particular
problems, especially those involving interfaces; however it is not so
widely used as the Eulerian formulation and it will not be considered
here.

To close the system of equations (2.1) to (2.3), one must add
constitutive relationships for the stress tensor ¢ and for the heat flux
vector ? . Usual fluids, such as air and yater, in ordinary conditions
follow Fourier’s heat conduction law for ¢ and Newton’s iaw (or Navier-
Stokes’law) for & :

(240 Ja-£ gudT

g’._/z!,g (!:uni!tensor)

{2.5} — = - - -
T AT LoV (47 o gud Vs (pad¥))
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where 7 is the absolute temperature and r is the pressure; X is the
thermal conductivity coefficient, and A and o are the two coefficients
of viscosity.

Fluids which follow Fourler’s law and Newton's law are said to
be Newtonian; the Navier-Stokes® equations are the general equations of
motion for Newtonian fluids, i.e. equations (2.1) to (2.5). These equations
must be complemented by thermodynamic relations connecting the ther-
modynamic varlables, ¢ , €, 7 and A - In the case of a simple fluid,
the thermodynamic state of a fluid particle can be defined by the two
variables ¢ and € , and all the thermodynamic properties of the fluid
(assuming local thermodynamic equilibrium) can be deduced from a
single fundamental relation such as :

53 \S(P,&)

where S is the specific entropy. In particular the pressure /t and
the temperature 7 can be calculated in terms of @ and € :

(2.6) p= ple.e) , TaT(ee).
A particular, but important, case is that of a perfect gas with
constant specific heats, for which (2.6) is :

(2.7) pely-1)ee , ea GT

where  J = -Z(:& and C‘ﬁ ,Cp are the specific heats.
v

The viscosity and thermal conductivity coefficients depend on the
local thermodynamic state; in usual conditions they depend only on the
temperature :

(2.8) Bad(r) , AM(T) , wapu(T)

It can be shown from the second law of thermodynamics that A
and g must verify the following conditions :

{2.9) SA,24 50 ; w30.

In the absence of internal relaxation phenomena which would
involve departure from local thermodynamic equilibrium, Stokes’: relation
is considered to hold :

(2.10) 3A+2u 5 0.

The system of equations {2.1) to (2.10) is then closed, in the

sense that there are as many equations as unknowns. The basic unknowns,
in terms of which all other dependent variables can be expressed, are

e - ?V {or ¥ ), and @& (or £ ,ore ). Note that this system is
in the normal form with respect to time, i.e. the time derivatives of
the basic unknowns are explicitly given in terms of their spatial deri-
vatives. Another feature of equations (2.1) to (2.3) is their divergence,
or conservative, form which results directly from the application of the
fundamental conservation laws to a finite fluid system.

The unsteady compressible N.S. equations are of hybrid parabolic-
hyperbolic type, while in the steady state they are of elliptic-hyperbolic
type. To let the nature of these equations show up, we develop the
space derivatives of highest order (i.e. second order). The momentum
equation, neglecting external forces, can be written :

2.11) p% 1 99In < A7) dv Vgnd T v 5(T) grad T df ¥V + L7
where 4[ is a second-order differential operator :

LV wp Vs (Arp) gud (dir7)

and where D/Dt = ‘)/()t * -V‘ fa/ is the material derivative. It
is easily verified that the operator & is elliptic except if A+ 2us0
but from conditions (2.9), A+ 2p  must be positive. Equation (2.11)
for the unknown V s parabolic with respect to time. Similarly, the
energy equation expressed in terms of [ instead of g . assuming

a perfect gas with constant specific heats, becomes :

(2.12) PC,%*}J’VV: ¢+1(U(yrd7’}‘,ldf

* Hereafter we sheil abbreviate sNavierStokesr by the initials N.S.

and it is parabolic with respect to time. &

$a gl o M¥)'s Lu V. V.

is the dissipation function :

(2.13)

Note also that the left-hand side of (2.12) is equal to 7 05
where S is the specific entropy. ot

Expressions (2.11) and (2.12) of the momentum and energy
equations show that these equations are quasi-linear, i.e. they are linear
with respect to the second order derivatives of ¥ and T respectively.

The continuity equation (2.1) can be written :

2.14) L ko, divV o0

ot
Considered as a first order equation for the unknown e. its
characteristic base curves are the trajectories of fluid particles.

Problems to be solved in practice are either mixed initial and
boundary-value problems or time-independent boundary-value problems,
and there does not seem to exist rigourous mathematical results con-
cerning the boundary conditions to Impose in order to insure existence
and unicity of the solution. One should resort to physical intuition and
take into account the mathematical nature of the equations; the latter
indicates that on any boundary one should be given one scalar condition
for each scalar momentum equation an_g one condition for the energy
equation; the simplest conditions are V' and T given. An additional
condition for @ should be given only if the fluid enters the computa-
tional domain through the boundary.

The usual physical conditions on a solid impermeable wall for
viscous fluids are that the relative velocity of the fluid with respect to
the wall be zero and that the fluid and the wall be at the same tempe-
rature. In general one considers either that the wall temperature 7,
is given or that the heat flux at the wall, 9 - is given; the boundary
conditions are then :

VeaV-Vy o0

{2.15)

where V,, Is the velocity of a given material point of the wall, and
Tl ry

(2.16) or

A 3)_1. = Jy (=0 for an adiabatic wall).

The above conditions must be modified in the so-called slip-flow
regime when slight rarefaction effects come into play through the boun-
dary conditions at the wall without invalidating the N.S. equations in
the flow field; there exists then a tangential slip velocity and a tempe-
rature jump at the wall, given by the kinetic theory of gases :

v,.c,z%%hcz.e%glz

(2.17)
T-E. [; _é;g_: (R. flfﬁ. Prandtl number)
where ‘J/(Jg and ‘)/3/ are respectively the normal and tangential

derivatives at the wall, ¢ is the molecular mean free path, a the sound
speed; (; , C2 and (3 are dimensionless constants which depend
on the laws of interaction of the molecules with the wall. Concerning
the connection between the kinetic theory of gases and gas dynamics,
one can consult, for example, ref. (1] and [2].

To close these general considerations, and for reference purposes,
we consider the expressions of the N.S. equations a) in dimensionless
vectorial form, and b) in dimensionless form in a cartesian coordinate
system for two-dimensional flows. We neglect external forces and we
assume a perfect gas with constant specific heats.

a) The only characteristic quantities which need be used to define
dimensionless variables are :

L g » . s . 1'
a length . avelocity V', adensity o*, values «*® and of
the coefficients of viscosity and thermal conductivity. From these, other

4

reference gquantities are derived : L /V? for the time ¢ , e* V'for
the pressure, and V" for the total energy £ and for the internal
energy €




Using the same notations as previously for the dimensionless
variables, the equations (2.1} to (2.3) remain unchanged in dimension-
less form. The constitutive relationships (2.4) and (2.5) become

7a- f?_fT‘ £ gud e
(2.18) ge-pl+ g 2
ATl pdfiV
where Ry w V_’/LL._"’_ is a characteristic Reynolds number

L ]
and R _}zé:f‘_
If a characteristic temperature e is used to define a dimension-
less temperature 7 , the laws of state (2.7) become :
A= (1-1)epe (unchanged)

(2.19) “
€ =
11-1) 17

is @ characteristic Prandtl number,

where ”’. \”7&,..?

If we choose T"s V"/[y , we get simply €a 7 . Other

is a characteristic Mach number.

parsmeters will enter the problem through the boundary conditions (e.g.

ratlo of wall temperature to free-stream temperature) and also through
the laws used for u (7) and £ (T).

b) The N.S. equations for two-dimensional flow can be written in a
cartesian coordinate system (coordinates < } . velocity components
& , ¥ ) in the following form :

OW OF 06 1 [oF ﬁ)
(2.20) T + J: + )i % e # "i

where W , £, G, f; and & are 4-component vectors : the first
components correspond to the continuity equation (2.1); the second
and third components correspond to the projections of the momentum
equation {2.2) on the £ and
ponents yield the energy equation (2.3).
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With Stokes’ assumption

e F a1 -8

s
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3)42;..0 we have :

Gy = -dp(2 5 ‘)’

3. Interest of the Navier-Stokes equations

To briefly discuss the practical interest of the N.S. equations in
aerodynamics, It is convenient to distinguish between two broad classes
of flow fields according to the order of magnitude of a characteristic
Reynolds number.

If the Reynolds number is large, the flow field is made up of
regions which, to a great extent, can be described either by Euler's
equations for inviscid flow, or by Prandtl’s equations for boundary-
fayer flow. However the N.S. equations remain usually needed for the
description of the flow in local zones where the above approcimations
fail; the existence of such zones Is the rule rather than the exception
in the flow fields encountered in practice. These N.S. regions, although
they may be of small extent, usually have an important influence over
the complete flow, and they are an essential feature of the flow field
for the determination of a unique solution. Figure 1 shows some classi-
cal examples of N.S. regions imbedded in large Reynolds number flows.

Large Reynolds number flows are likely to be turbulent, and this
is indeed the most usual case in aeronautical applications. The N.S.
equations remain valid for turbulent flows, but the numerical prediction
of such flows with existing methods and computers cannot be based
on the computation of the turbulent fluctuations from the exact un-

layer interaction..

g

f) Separation over
a compression corner.

Fig. 1 — Navier-Stokes regions in large Reynolds number flows.
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steady N.S. equations, because these fluctuations involve very small time
and space scales. As is well known, one must consider the time-averaged
{or ensemble-averaged) N.S. equations for the determination of the mean
motion, complemented by additional relations or differential equations
for the various correlation terms in orcar to close the system of the
averaged equations. This set of additional equations, which constitutes

a turbulence model, is necessarily largly empirical. Thus although the
N.S. equations present the same importance for turbulent flows as for
laminar flows for a correct description of flow phenomena in local
zones, their practical interest is |inked to the validity of the turbulence
model which Is used. The particular aspects of the numerical calculation
of turbulent flows will not be considered in this paper.

On the other hand, if the Reynolds number is low enough, as for
example in flows about small obstacles or in the first phase of atmos-
pheric reentry, then viscous effects are nowhere negligible and the entire
flow field must be described by the N.S. equations.

An intermediate situation is that of a flow in which it is possible
to identify regions where dissipative effects are negligible, i.e. quasi-
inviscid regions, but in which the other viscous regions cannot be des-
cribed by the boundary-layer approximation, because they are very thick
and they interact strongly with the inviscid flow regions. In that case
the N.S. equations are needed only in these viscous regions, but the
interaction with the inviscid flow should be properly taken into account
in the numerical method. Such a situation, which occurs at moderate
Reynolds number, is illustrated on figure 2 in the case of supersonic
flows about a blunt body and about a slender body; the viscous regions
are indicated by shaded areas. When the Reynolds number decreases
the viscous regions extend until they occupy the entire flow field,
merging with the bow shock wave. At still lower Reynolds numbers,
the shock-thickness cannot be considered negligible on 8 macroscopic
scale, and one reaches conditions which stand at the limit of validity
of the N.S. equations. '

Fig. 2 — Moderate Reynolds number flows.

4. The computation domain

Finite-difference methods operate over a finite number of calcu-
lation points, so that the computation domain must always be a bounded
domain. How to define this domain is the first question which arises in
the setting-up of a numerical method, the second question being that
of the conditions to be imposed on the boundaries.

Part of the boundary is given by the physics of the problem
(wall, axis of symmetry ..... ), but-excluding cavity type flows- it is
always necessary to define an out er non physical boundary in a more
or less arbitrary fashion.

a) Consider first the case of a N.S. region imbedded in a large Reynolds
number flow. By definition this region is bounded, and the only requi-
rement is that it should extend over sufficient distances so as to overlap
the adjacent inviscid flow region or boundary layer flow region, of course
some preliminary knowledge of the problem to be solved is necessary

in that case for the definition of the N.S. region. Figure 3 shows two
examples of N.S. regions which might be used in a shock-boundary

layer interaction (fig. 3 a} and in a base flow problem (fig. 3 b). The

outer boundary ABCD separates the N.S. region from the inviscid flow
region (1) and from the boundary layer flow regions {2) and (3). The
conditions to be applied on this outer boundary should express the
matching between the solution of the N.S. equations in the N.S. region
and the solutions of the approximate equations used in the adjacent
regions. Of course the solutions in region (1), (2) and (3) depend on
other boundary conditions to be imposed on the outer boundaries of
these regions. In general the matching conditions on the boundary ABCD
can be satisfied only through an iterative procedure. However, in some
cases, the calculation of the solution in the N.S. region is uncoupled
from the solutions in the external regions. This is the case in the two
examples of figure 3 if the inviscid flow in region (1) is supersonic
and is made of simple wave flows along A’'BC (fig. 3 a) or along BC
(fig. 3 b).

incident
shock™

(1)

D

a. Shock - boundary layer
interaction problem

b. Base flow problem

Fig. 3 — Computational domains for Navier-Stokes regions.

Thus, in the shock-boundary layer problem (fig. 3 a) considered
in [3] and [4], the flow quantities are held fixed along AB and BC :
a boundary layer profile is given on AA” and uniform flows along A"S,
SB and BC, compatible with the incident given shock. Along DC, the
flow quantities are equated to the values computed st the next previous
column of points; this is an approximate way of expressing the condition
that the flow downstream of DC does not influence the flow in the N.S.
region since the N.S. solution merges in an inviscid supersonic flow along
D’C and in a boundary layer flow along DD’.

For the base flow problem (fig. 3 b) computed in [5], the boundary
conditions along ABCD are the following ones : a boundary layer profile
is imposed on AB, an extrapolation of the flow quantities is used on
DC; finally, the flow in (1) along BC Is assumed to be inviscid and to
be represenited by a simple wave so that the flow quantities on BC are
obtained by continuations along characteristic lines from points inside
the N.S. region.

b) Consider now the case when the entire flow field is computed by
means of the N.S. equations and when steady uniform flow conditions
are imposed at infinity. Different techniques can be used. First, it is
possible to use a coordinate transformation which maps the entire phy-
sical plane (assuming two-dimensional flow) into a finite domain in the
transformed plane where the computation will be carried out; images
of the points at infinity in the physical plane form a portion of the
boundary {which can be called the outer boundary) of the computation




domain. An example of such 8 method Is the classical conformal mapping
of the exterior of 8 profile into the interior of a circle, the computation
plane being the ( 7 , 8 ) plane where ~ , O are polar coordinates

in the plane of the circle (fig. 4).

SO S
_~ T 7

v

Physical plane Plare of the circle

{ar B .8
0 21

Computational plane

Fig. 4 — Conformal mapping of a profile into a circle.

The image of infinity is the center of the circle, so that the outer
boundary in the computational domaln is the segment AB { 7 = 0,
0¢dsm
Note that the first mesh between © = 0 and * = AFr corresponds to
an Infinite mesh in the physical plane; differencing accross this first
mesh will not cause problems in general if the dependent variables are
bounded at Infinity.

); flow quantities are given on this outer boundary.

This method works as long as the flow quantities on the first
line /= Ar are close enough to the uniform flow conditions, so that
it is not very much different from a second technique in which an outer
boundary is chosen at a large but finite distance and the uniform flow
conditions at Infinity are imposed on this boundary.

A third technique, illustrated on figure 5 (flow around a finite
body delimited by two arcs of parabolas [8]), consists in choosing an
outer boundary at a finite distance and in dividing this boundary into
two parts® : on the upstream part BAD (through which the fluid enters
the domain of calculation) one imposes the uniform flow conditions at
infinity; on the downstream part BCD (through which the fluid leaves
the domain of calculation) condition of a more empirical nature are
imposed, e.g. extrapolation.

D

uniform N\

flow >

extrapolation

‘T’

Fig. 5 — Artificial limitation of the computational domain.

The physical justification of this technique is that the downstream
part of the boundary is t00 close to the body for the flow to reach
again the same conditions as at upstream Infinity, but far enough for
Its upstream influence to be small.

A fourth technique Is similar to the one discussed for the case
of a finite N.S. region : the outer boundary Is chosen at a finite but
large enough distance so that the flow outside this boundary can be

® We must assume thet a streamline cuts the boundary onty in two points.
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calculated by means of a small perturbation analysis; this outer solution
depends on unknown constants (the first constants to appear in this
analysis are related to aerodynamic force and moment) which must be
determined by matching with the flow field calculated inside the boun-
dary. This technique is the most rigourous from a mathematical point
of view but, probably because of its complexity, it does not seem to
have been used for the compressible N.S. equations.

It was Implicitly assumed in the preceding discussion that the
flow perturbations were felt far away in all directions; this is not the
case for a body In a supersonic flow, the flow field remalning unperturbed
upstream of a bow shock wave. The computation domain can then be
limited either by a boundary located at a short distance upstream of the
bow shock or by the bow shock itself, depending on whether the shock
is treated as a sharp but continuous transition zone (shock-capturing
method) or as a true discontinuity (shock-fitting method). If the upstream
boundary is taken upstream of the shock uniform flow conditions are
used as boundary conditions. If the shock itself is used as upstream
boundary, the determination of the shock position and of the flow
quantities behind the shock require more elaborate methods.

5. Finite-difference methods
5.1. Generalities : various approaches

Apart from a few integral methods [7], [8], all other methods
used for solving the compressible N.S. equations are finite-difference
methods. Some of them, for example [9] [10] [11], consider the steady
two-dimensional equations associated with the vorticity-stream tunction
formulation. The discussion here will be limited to unsteady or * pseudo-
unsteady ° methods for the solution of the N.S. equations written in
terms of the primary dependent variables as described in section 2.

When the flow to be computed is unsteady, the numerical scheme
must obviously be consistent with the exact unsteady equations, and it
must be accurate enough in time as well as in space {second order In
general}.

On the other hand, various approaches can be considered for the
computation of steady flows :

a) In the first approach the unsteady N.S. equations (2.20) are
solved by a finite difference scheme consistent (with or without condi-
tion) with these unsteady equations. The steady solution is obtained in
the limit £ —a®. The initial condition can be arbitrary. In the case
when the initial condition is physically realistic and if the boundary
conditions are treated in a consistent way with respect to the unsteady
problem, the transient solution has a physical meaning and the physical
interpretation of the problem may allow an easier control of the results
during the transient stage. 1f the initial condition is physically unrealistic
and/or the boundary conditions compatible with the steady problem
only, the transient solution has no physical meaning. In this case the
use of the unsteady equations appears as 8 device to bulld an iterative
procedure for the solution of the steady equations :

O L% | 1 (I, 6 )
Re | ax "oy

(5.1) s youd
and the time step At can be interpreted as a convergence parameter,

—5;’:)’

b) If we do not require the transient solution to have a physical
meaning, it is not necessary that the scheme used be consistent with
the unsteady equations. The only requirement for the scheme Is to
give a steady solution when ¢—.e which must be an approximation to
the solution of the steady equation (5.1}, hence the scheme must become
consistent with {5.1) when convergence is reached. This pseudo-unsteady
approach was suggested by Crocco [12].

The eventual advantages to be looked for In constructing a non
consistent scheme are : (i) a stability criterion which allows a larger
time step than with a consistent scheme, (ii) a faster convergence to
the steady state.

c) Going a step further in the pseudo-unsteady nature of the
method we can try to obtain a faster convergence and/or a larger time
step by modifying the unsteady equations themselves, i.e. by replacing
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the vector W by another vector W and by solving the pseudo-
unsteady system :

(6.2) _‘M*i,—%: ! aF M’)

A Tox Ty 7 oz a'a

For the solution of (5.2} it is possible to use again a non consis-
tent scheme.

Such an approach was used in [6] for the computation of a flow

field with a base flow region. With the exact W, l.e. Wa ((,ful,f’,([)r

the scheme used [see eq. (5.22)] leads to a stability criterion of the
type : At & Re p AZ%. In the base region, the density ¢ becomes
very small; as a consequence the maximum allowable time step 4at is
so small that the computation becomes impracticable. By simply choo-
sing W'a(e,a,v,T) T the associated stability criterion is inde-
pendent of P and the above difficulty is avoided.

The determination of a non physical ¥~ in view of obtaining a
fast convergence of the solution of {5.2) is much more difficult, and
it has not yet been carried out except in special cases : for example,
the idea was used in [13] for a one-dimensional incompressible boun-

dary layer flow.

In the next section, we present some representative finite diffe-
rence schemes which have been effectively applied for computation of
viscous compressible flows. Some of them are consistent with the un-
steady equations, and others not. For simplicity, the schemes are pre-
sented with model scalar equation :

ou

5.3 Y B 4 c' €>0.
(5.3) = 9 f(u)= (w i

The following notation is used :
(5.4) Alw)= 94 fla

du / )

X = A2, 4 anlt,iandr are integers, 4z >0 , 4t>0

(5.5) -
ll.f- ﬂ(:i,t‘) fi.l f’(“:) /.l{(l:)

(5.6) . At V. €At

Az Ax?

6.2. Schemes consistent with the unsteady equations

5.2.1. One-step explicit method (Victoria-Widhopf [14]}

This is a leap-frog Du Fort Frankel scheme :
asf
67 «’a cr(f',_/‘,}.
n nef e-f 2
+ 2"[“".:-(“; v al')s ad, ]

The principal part of the truncation error is 60"(0&/‘”')
therefore the consistency is obtained if &7 %= o(1)
when AL ,4Z . 0 . At steady state the accuracy is o(4x?),
A linear stability analysis, assuming A = 4///‘= const., yields the
Courant-Friedrichs-Lewy (CFL) condition :

(5.8) (Al T ¢ 1.

The curve (1) of figure 6 shows the domain of stability in the
plane ( [A] Az/¢e , €0t/ Bx*).

This scheme possesses the interesting property to have a stability
criterion independent of the viscosity &€ ; however if & =0, the resul-
ting (leap-frog) scheme is nonlinearly unstable, as it is well known [15].
Note that the theoretical consistency of the scheme during the transient
stage implies the use of a much smaller time step than the one allowed
by (5.8).

6.2.2. One-step implicit method (Briley-MacDonald [16])

This method is based on an implicit discretization of the equation
(5.3) associated with a technique of linearization of the nonlinear term
0f /dx. The discretization in time is

(59) u - (.gx_[);'lg & (%%.)W

[

The term (&//Jx)‘-"'

(5.10) _)M (i)

is expanded as :

[ (%)) + 0car)

now

o () (%
9 ) D (A K),
du o Fry ot

Finally, by bringing {(5.11) and (5.10) into (5.9) and approximating
the derivatives we get the scheme :

612 ' at "(r:" L) i[ﬂm (aly - ay) -

_ﬂh,(ll“‘-ll._,)] o(ul) - 24X a2 )s0

o

which is a linear finite difference equation of the general form :

nd LI 12 g, ned x
aj wi’y + 6, ul' v et all) 2 d;.

(5.13)

This equation corresponds to a tridiagonal matrix which can be
easily inverted by the technique of factorization (Gaussian elimination).

The scheme (5.12) is first order accurate in time and second order
in space (second order at steady state). For the calculation of unsteady
flows the accuracy in time can be increased up to second order by
using a Crank-Nicholson discretization in (5.9) :

£y,
=

a:"-af 1[(:)/ e

-4 [(55)" (3)]

Because of its implicit character the scheme (5.12) is linearly
stable without condition; however the application of the technique of
factorization to the solution of (5.13) may impose some limitation on
the coefficients of (5.13) (diagonally dominant matrix).

(5.14)

In [16] the method is extended to multi-dimensional N.S.
equations by using an alternating direction Implicit technique (Douglas-
Gunn [17]). For three-dimensional flows the problem reduces to the
solution of a 3 X 3 block-tridiagonal system and of two simple tridia-
gonal systems. The solution of these systems requires about one third
to one half of the total computer time per time step; but the compu-
tation can be done with a very large time step J¢ (in some cases, up
to 1250 times the 4 given by the C.F.L. condition).

2 T T T

: 1 -C.FL. condition
15 - scheme (5.7)
* = 2 _scheme (5.15) 7]
: 3 _scheme (5.17)
4 _scheme (5.19).(520)
S _scheme (5.22)
6 _scheme (5.28)

\Al bx /¢

2 4 6
Fig. 6 — Curves of stability.




5.23. Two-step explicit methods

a) Brailovskaya [18].
The two-step explicit scheme proposed by Brailovskaya is the
following one :

(5150 &"'u uf - T ({7, f ) e v (aly 20l s el,)
([LMI u')"v (‘"’ 2'_ . l.‘ ,)

0(sts82*)

in the steady state. The stability criterion given

llf I

5.15b) &;

The accuracy is during the transient

sate, 0 (4dz%)

In [1B] is :
(5.16) st M 0 4
E TAl

The study of the amplification factor for the scheme (5.15) with A=
const. is very complicated, and It can only be shown that {5.16) is a
sufficlent condition. In fact, by doing a numerical study of the ampli-
fication factor, we found (5.16) to be too restrictive : the curve (2) of
fig. 6 shows the domain of stability obtained numerically. Note that
At = Ax? € =~ 1, so that the accuracy is of second order
even during the transient state.

when

b} Thommen [19]

Some of the methods used for solving the equations of motion of
viscous fluids are direct extensions of methods primarily devised for
inviscid flows. So, the two-step Lax-Wendroff-Richtmyer scheme [15]
has been extended to the N.S. equations by Thommen [19] in the
following manner :

~ lv '’
“,;, (“';:1 ¢ 14 ) fier - % )

'—[( fp- 2Ty 47 ) (0 - 203 5 12,)]

(5.17 a)

s170) 4™

Fnef Fuef o
-V/[‘.‘{ SLVE e (e, 247 o 5Y,).
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O(&a s A.:") during the transient
at steady state and the exact linear stability crite-

The accuracy is
state, O dx*)
rion (curve (3) of fig. 6) is
(5.18} AIV'f 2«17,

From (5.18) we deduce that the effective accuracy with respect
ofeat) if €= 1 then

At ~ Az and it € < 1, then €0L< Ot

to time, . is higher than first order :

c} MacCormack [20].
In one-dimension, there are two variants of MacCormack scheme :
1) The forward-backward scheme :

(uf 7(“)' v (“;!‘2";'
u:.‘ &;;1)_3‘_(’2-;”'_ /“.-.’l)
(&N - 2ar.ar)

2) The backward-forward scheme :

L3
Lt )
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(5.19b) a:.'"
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( it " * i )
The truncation errors for the two variants are of same order
0(at%s 8z*) . bur lheIr expressions are different. In the inviscid
case ( €= 0), with f « /2, a study [21] of the truncation errors

has shown why (5.19) can give shock profiles without oscillation when
the shock propagates toward the right { £ > 0) whereas {5.20) has

1 f 1
(520b)  4¥ ,_ ")

the same property in the reverse case.
An approximate stability condition has been given in [22] :

AT 4v*s2va0 it Aer.3vi <o
(5.21)

At _4viizv et it Aerio3viso
Ari.avi.o , Le. near 1A14Z/& =
V3. The curve 4 of fig. 6 shows the exact domain of stability deter-

mined by a numerical study of the amplification factor.

1t is not valid near

6.3. Schemes non consistent with the unsteady equations

As already explained it may be interesting to consider schemes
which are not consistent with the unsteady equations. In that case, the
scheme must satisfy two conditions : (i) to give a solution which tends
toward a steady state, (ii} to be consistent, in the steady state, with
the steady equations. Such a pseudo-unsteady approach can be inter-
preted as a8 way to build an iterative procedure for solving the finite
difference equations approximating the steady partial differential
equations.

53.1. One-step scheme (Peyret — Viviand [23])

The following scheme is suggested by the Gauss-Seidel technique :
et n n net wet
6220 uf aul L (L0 SN )ev(al,-2ar s aly))

It is clear that {5.22) is consistent with the steady equation
assoclated with (5.3) if a steady state (uf". al ) Is obtained.
in order to have informations about the existence of a steady solution,
we shall consider (i) the stability of (5.22) and (ii) the partial differen-
tial equation with which (5.22) is consistent.

1t 4= df /du = const.,, we obtain the stability condition :
(5.23) _zia',)’sf

Taylor expansions in (5.22) show that the scheme (5.22) is con-
sistent with the following equation of evolution :

ol of 2
(5.24) L L hrof e =0
oc ! ( a.:*)
with
1
{6.25) K =

4
1-{\)4?0')

{where A may be a function of u). The equation (5.24) is parabolic

in the direction £ > 0 it K > 0. This is a necessary condition for
the solution of (5.24) to tend toward a steady limit when £ — =, The
condition K > 0, i.e. .;.(7 + ¥ < 1, and condition {5.23) give the
necessary condition of convergence :

(5.26) /2L7¢,v<1.

The domain of convergence determined by (5.26) is limited by
curve (5) on fig. 6.

In the case A = const., the scheme (5.22) is nothing else than

the application of the successive relaxation method to the solution of

{5.27) —4_.2- (ablﬁf - ‘ai-f)‘ a‘é‘—'xx (IL‘-” - Zai ¢ uﬁ-l)' 0

with w= 2EAL/0x*

e 124 wet net
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as the relaxation parameter :

4 - 0y (1-0) 4l

By application of theorems on the convergence of this method [24]

for the solution of (5.27) with Dirichlet boundary conditions, it is
possible to show that condition {5.26) is sufficient to insure the con-
vergence of the iterative procedure if A > 0; if A < 0, it can be shown
that conditions (5.26) and /A/4x < 2¢ are sutficient for conver-
gence. The connection between relaxation methods and equations of
evolution has been discussed for instance in [45].
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Assuming (5.26) to be satisfied, we have the following results :
() ifA>0, then K > 1
(il fA<OandiA|lAx <2€ ,then A >1
(iii) FA<O0and/Al/ AT >2£& ,then1/2< K < 1.

If A <0, It would be necessary to consider &;,, instead of &,
at iteration M+1  in order to have A > 1 without other condition
than (5.26). When K > 1, the convergence toward the steady solution
is faster than the convergence given by a consistent scheme (for the
same 4t ). Finally, we note that the criterion (5.28) is less restrictive
than the criterlon of the fully expliclt scheme (by a factor of 2 if
A=0).

6.3.2. Two-step scheme (Allen-Cheng [5])

The method of Cheng-Allen is 8 modification of Brailovskaya
scheme (5.15), based on a non-consistent discretization (with respect
to time) of the dissipative term du/ox? already used by Crocco [12].
This two-step scheme is :

T3 x R A ~ust
(6280) & & ”z-(/[ﬂ - r/i.')* V(a}:,-?a; ' Ui

e f > ~ -~

(528b) 4, 4. £ (F0 g )ev (@l - 24l 2T ).
The non-consistency of this approximation leads to a sufficient stability
condition independent of the viscosity coefficlent ¢ (the C.F.L. condi
tion) :
{5.29) Al ¢ 1.
A numerical study of the amplification factor corresponding to (5.28)
with A = const. shows that this condition is too restrictive. The curve
limiting the domain of stability (curve (6) on fig. 8) Is asymptotic to

M/Ax/f 22 , and the scheme is linearly stable without
limitation on 4t if /A] dx/é < 2.

As for the previous non-consistent scheme (5.22), we consider
the partial differential equation which is effectively discretized by (5.28);
it is an equation of the form (6.24) with X given by :

- 1+4v

(1+2¥ )‘
From (5.30) we deduce :
il K >0, so that the equation (5.24) is parabolic in the right
direction £ > 0, which Is a necessary condition for convergence
towards a steady limit when £ — o,
(i) K < 1, hence the convergence Is slower than the one given by
a consistent scheme, but this relative slowness is balanced by the good
stability property which allows large time steps. The rapidity of conver-
gence of the iterative procedure corresponding to (5.28) can be charac-
terized by the parameter K AL which Is inversely proportional to the
number of time steps required to reach a given state. From (5.30),

K At s an increasing function of 4¢, so that it is advantageous to
use values of 4¢ as large as possible (despite the fact that X decreases
when 4t increases). If [Al Ax/& < 2
on 4 from stability (of course & must remain a small quantity
for eq. (5,24) to be meaningful), and the larger V the faster the
convergence is; for ¥ » 1, onegets Ko V'  and A4+ 4z2'%:
the rapidity of convergence Is comparable to that given by an explicit
consistent scheme for which X = 1 and 4¢ ~ Az!/£ (because of the
stabllity condition). If /A/dzx/& » 2, stability imposes ¥ « 1,
hence X -+ 1, and At v Ax; again the rapidity of convergence is
comparable to that of a consistent discretization with the C.F.L. con-
ditlon.

(5.30) K

, there is no limitation

Numericai applications of the schemes (5.19), (5.22) and (5.28)
for the linearized form of eq. (6.3), with 4 =1, € = 0,1, have been
presented in [39]. The results are in agreement with the previous dis-
cussion of the convergence based on the equation (5.24) effectively
discretized by the scheme.

6. Boundary conditions at a wall

The problem of the treatment of boundary conditions on an
impermeable wall in viscous compressible flow reduces to that of the
calculation of the pressure (or of the density). Indeed the velocity and
the temperature at the wall are easily determined : in the continuum

flow regime, the relative velocity is zero (eq. 2.15) and in general
either the temperature or the heat flux sre given (eq. 2.16); in the
slip flow regime, the velocity and the temperature are related to their
gradients (eq. 2.17); discretization of these boundary conditions allows
the determination of velocity and temperature at the wall from the
values of these quantities at neighbouring points.

The wall pressure or density cannot be obtained from boundary
conditions, and it must be deduced from the N.S. equations them -
selves. Examination of the two-dimenslonal N.S. equations written in
a coordinate system ( § . ? ) such that 1) = O represents the wall,
but else arbitrary, reveals that knowledge of the pressure at the wall
is eventually required only in order to determine the value of the
pressure gradient 0} /&9 in the momentum equations written on the
line 7. 47 next to the wall (fig. 7), for Instance :

(Z) - 2.

24y

(6.1)

Fig. 7

In this case it is necessary to compute ﬁ‘ . Other possibilities
are either to define (r)ﬁ /37 ), without using the value £, ,
or to find a method which dees not necessitate the knowledge of the
gradient ( ()/1 /37 ), . We present now these different approaches,
and, in order to simplify the presentation, we consider two-dimensional
flow In cartesian coordinates { z,y ) so that the wall is ,'( =0. At
the wall the velocity is zero : &y = ¥, = 0. All the flow quantities
are determined at same mesh points.

a) A first technique consists In calculating the density at the
wall & from the continuity equation :

6.2) e, 3"_(‘» v)al & o

ot
This technique is of delicate use and may lead to divergence of
the results for £ — o, In particular, in the case of separated fiows
(see [5], [6], [25]), negative values of density may be obtained. However,
a special discretization of (6.2) based on leap-frog scheme (5.7} has
been used with good results for blunt body problems (steady [14] or
unsteady [26]). This discretization is :

- - (o) - 0]

The quantity (902: {see fig. 8) is determined by a second
order extrapolation in space and time of the form :

(ev)y = 2(pa)""- (pv)"* = -(e2)"".

This method amounts to use the following first order approximation

for Olev) /:); in 62) :

6.5) /% (po) _Z e é / -Z’—[{en)"ﬂ teo) ] -(Pv),”/

6.3)

(6.4)

j=2 42 |y 27y

y= Ay




b) A completely different approach is to approximate (t),l./ﬁ )
with a formula which does not involve the pressure at the wall. For
instance, noncentered difference formulae can be used; with first order
accuracy :

(6.6) s)g ) (t-M)

and with second order aecura&yy .

6.2) ( A (hatp-3p).

b %2 d’

A more Involved variant makes use of the value of (9/!/{7’)
which is obtained from the momentum equation at the wall =0.
More precisely, interpolation between the points y =0 and y: Jd,/z
glves the second order accurate formula :

(6.8) (_‘Z.) - L (& .JL) ( s 2 MM

J d’
where ( c’;& /J )o has to be calculated with second order accuracy
from the xransversal momentum equation at the wall

(6.9) ( ) Tl & Jr OT  ou oT

( / d:d, -077#{)30’0’ d’dx)
The discretization of the right-hand side of (6.9) requires the use

of noncentered differences in the y-direction but presents no difficulty.

In a high Reynolids number boundary layer type flow, (0)/0’ ),
will be very small, and could be considered as equal to zero. For this
reason some authors have simply used /t‘.f, .

[Note : in the general coordinate system { § y } of fig. 7, 0/%/37
and 90 /0§ will occur in both scalar momentum equations; the ex-
pression of the gradient { Jp /d? J, is then obtained from a
combination of these two scalar equations].

If the value of M is wanted, it can easily be deduced from

(o /2y )
hed (2 -p-m ()]

An analogous technique has been used in [27] In association
with a two-step explicit method in which the predictor is computed
at mid-points as in {5.17).

, for instance using :

(6.10}

c) When only the steady state solution is of Interest, It is not
necessary that boundary conditions be consistent with the unsteady
problem. Moreover in the cartesian system of fig. 8 (or any orthogonal
system associated 1o the body, 7 being projected along the coordi-
nate lines), the value of (r)/z/()ll ), occurs only In the trans-
versal momentum equation at point 1 which determines the velocity
component ¥ . These remarks explain a procedure [23] in which zr,"’
Is calculated not from the corresponding momentum equation, but from

(34"

which is a consequence of :he steady continuity equation written at
point O {see eq. 6.2). A noncentered approximation of {6.11) yields :

[ T3] 4 nef
s, )‘Tﬂ' .

the steady condition :

{6.11)

nef 1 et
6.12) LAY (39,
When the steady state is reached a centered discretization of the
transversal momentum equation at point 1 gives the value of /1, .

d) In references [5], [28], [29] the wall is not a mesh line but
is located at mid-distance between two mesh lines {fig. 9).

y=34y/2

Fig. 9

y=A8y/o
= y= O
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The technique successfully used in [5)], [28] for a wall at specl-
fied temperature, consists in the determination of ea ! by a linear
extrapolation :

net nef 4 1
{6.13) e. - _g_e, - 5 e;n .

However, which such a mesh, it is necessary to use appropriate
differences when values at point 1 are computed. In the particular case

of the base flow (fig. 3 b), it has been found [5] [28] very important
to approximate the derivatives ( op/ 0’ )' where

= pv, evt,

by second order accurate differences :

IR

A first order approximation such as

( ) 41,[21‘(7‘3 t)-%]

gives an under-estnmation of (” and ( ev )4 which leads to the appes-
rance of negative densities.

eur, kv

(6.14) pe3g-46)

(6.15}

7. The treatment of shocks and shock-layers

The numerical treatment of shocks in viscous flows leads to dif-
ferent problems depending on the importance of dissipative effects.

In supersonic low Reynolds number flows, shock waves cannot
exist as lines of discontinuities, but they appear as reglons of strong
compression which we call here shock-layers. The gradients of flow
properties in such layers are high, but they are not of an order of
magnitude greater than in the rest of the flow, so that thelr structure
can be correctly represented over several mesh points without special
mesh refinement. All the schemes presented in section 5 will be able
to calculate the flow in shock-layers.

At large Reynolds numbers, the thickness of a shock becomes
quite small compared to the scale of flow gradients outside the shock,
and it is no longer possible to consider a sufficiently refined mesh to
describe the shock structure; but this is not necessary if the Reynolds
number is large enough because the shock structure has no influence
on the flow field, only the jumps of flow properties across the shock
being of interest. In this case the flow is practically inviscid in the
vicinity of the shock and the jump relations are the usual Rankine-
Hugoniot relations. Of course the N.S. equations are then not really
needed to calculate the shock, but in many cases it may be more con-
venient to solve the N.S. equations in the whole flow field when the
inviscid flow region Is of small extent {e.g. in the cases of fig. 2). The
treatment of shock waves in this case leads to the same problems as
for strictly inviscid flows.

The case of intermediate values of the Reynolds number (for
instance in the blunt body problem) is more delicate because it is
difficult to known whether or not the inner shock structure should be
calculated as a part of the flow; furthermore the validity of the N.S.
equations to describe the structure of thin strong shocks is in doubt.
If the shock structure, as given by the N.S. equations, is caiculated,
the mesh must be very fine in the shock and this leads to computa-
tional difficulties; if one considers the shock as a discontinuity, the
question of the determination of correct jump conditions arises. A
theory has been established [40] to take Into account the dissipative
effects In the jump relations; this theory Is based on a small pertur-
bation analysis valid for large Reynolds numbers, and it yields correc-
tions to be brought to the Rankine-Hugoniot relations; however this
analysis rests upon the use of the N.S. equations to describe the shock
structure. In [112] the supersonic flow around a blunt body has been
calculated using simplified N.S. equations associsted with approximate
viscous jump relations.

To the best of our knowledge, the numerical solutions of the
complete N.S. equations published at this time have involved only either
low Reynolds number shock-layers spread over several mesh points, or
quasl-inviscid shock waves treated by the methods used for inviscid
flows and which we briefly review below.
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Two types of methods can be considered for computation of
shock waves in inviscid gas dynamics : the ‘shock-capturing’ methods,
and the ‘shock-fitting ' methods. Each of them presents its own advantages
and defects.

The shock-capturing methods are based on an appropriate discreti-
zation of the equations in divergence form [30], [31], and the shock
points are computed as ordinary points. The major advantage is that
no special treatment is required for the shock; on the other hand the
shock is no longer a discontinuity but it has a fictitlous structure spread
over a few mesh points. Moreover, spurious oscillations often appear
near the shock.

Concerning the schemes described In section 5, it can be noted
that the finite difference schemes (5.17) and (5.19) or (5.20) reduce,
for € =0, to schemes very often used for computation of shock waves
in inviscid flows by shock-capturing methods. The schemes {5.15) and
{5.28) have been used for the computation (based on the N.S. equa-
tions) of the shock wave in the hypersonic viscous flow over a flat
plate respectively in [32] and [33]. At the limit € = 0, the scheme
{5.7) reduces to the ieap-frog scheme which is known to be unable
to compute shock waves. The same negative conclusion applies to the
inviscid iimit of (5.22). Finally, we do not know at this time whether
the implicit method ({5.12) is able or not to compute shock waves,
although it has been proved that some implicit schemes [34] permit
such a calculation.

Shock-fitting methods are based on a speclal treatment of the
shock which preserves the discontinuous character of the flow. It is
then necessary to introduce an additional dependent variable related
to the shock position. The shock speed as well as the jumps of flow
quantities are determined by means of the Rankine-Hugoniot conditlons
associated with an additional relation. This supplementary condition is
deduced from the equations of motion ; for instance, It is a compati-
bility relation along a characteristic line [35], [36] or it is the value
of the pressure behind the shock given directly by the finite difference
scheme [37].

Shock-fitting methods present the advantages that there Is no
smearing of the shock wave nor spurious oscillations In its neighbourhood.
However, instabilities may appear in the shock front and convergence
toward a stationary state may be difficult to obtain if the transient
state if far from being realistic.

In viscous flows, shock-fitting methods have been applied to the
blunt body problem using, as in the inviscid case, a coordinate trans-
formation such that the bow shock becomes a fixed boundary in the
transformed computation plane. A more general approach, which is
presently studied for inviscid flows [38], is a floating shock-fitting
technique for Imbedded shocks : the shock is not associated with a
mesh line, but is left free to move through a fixed mesh.

8. Problems relating to accuracy and computer time

In this section we would like to discuss from a practical point of
view some aspects of computational fiuid mechanics, related to the pro-
blems of accuracy and computer time. These problems are not specific
to the numerical solution of the N.S. equations, but they do have an
Increased importance in this case because the N.S. equations are of
Interest in general for the calculation of flows with a complicated struc-
ture, at least in the case of large Reynolds numbers.

The computation of viscous compressible flows is expensive in
terms of computer storage and computer time for several reasons :
(i) the number and the algebraic complexity of the equations, [ii) the
convergence toward a steady limit of the solution of the unsteady N.S.
equations is the slower the larger the Reynolds number is, (lii) the
complexity of the solution, especially for large Reynolds number flows.
Thin boundary layer type regions require a very fine mesh for their
correct description; the problem of constructing such a mesh is made
much more difficult in the case of separated viscous layers since the
iocation of these layers may not be known in advance, even approxi-
mately. Similar difficulties arise in moderate Reynolds number flows

with shock waves if one wants to take into account the structure of
the shocks.

To keep the computing time within reasonable bounds it is im-
portant first to minimize the number of mesh points, and this usually
requires that the mesh system be taken non uniform In the physical
plane. This can be achieved by imposing a variable mesh spacing in a
given coordinate system, or by means of a coordinate transformation,
or by a combination of both techniques. The coordinate transformation
is generally also chosen so as to make the boundaries of the compu-
tation domain {In particular solid walls) coincide with lines of the mesh
system; this considerably simplifies the treatment of boundary conditions.

A coordinate system being chosen, and the mesh size being imposed
by accuracy requirements, various techniques exist 1o reduce the com-
puting time as much as possible for a given numericai scheme. With an
explicit scheme subjected to a stabllity condition, the local maximum
time step depends strongly on the locai mesh size in the physical space;
if the physical mesh varles in an important way throughout the com
putational domain, the time step will be determined by the smallest
mesh and will be very smaii. It is then practically indispensable to
divide the domain in several regions in each of which a different time
step is used so as to reduce the total number of operations necessary
to advance the solution in time in the entire field. This technique
necessitates a matching of the solutions at the interface of two regions
with different time steps; for the transient solution to have a physical
meaning, the matching must be made with values obtained at the same
time in the two regions; if no interest is attached to the transient stage,
the matching can be made with values obtained at different times,
but it is difficult to take advantage of this freedom to determine what
would be the optimum procedure. Going further In this direction, the
local value of the time step can be used at each mesh point [41]: this
very simple device eliminates the matching, but one cannot be sure that
it will not make the calculation diverge.

Another procedure which is often used to reduce the computing
time consists in carrying out successive calculations with mesh refine-
ment (local or general) from one calculation to the next one; thus the
calculation with the finest mesh, which is the most time consuming,
starts with initial values which are already a good approximation to the
exact solution.

Stiii considering the case of explicit schemes, It can be advantageous
10 use a splitting method [42] when the mesh spacing in the physical
space is much smaller in one direction than in the other direction (as
is the case for a thin viscous layer); in such a method, based on the
discretization of multi-dimensional equations by means of a series of
one-dimensional finite difference operators, the very small time step
associated with the smaller mesh dimension has to be used only for the
corresponding one-dimensional operators, whereas a much larger time
step can be used for the one-dimensional operators In the other direction.

Time-step limitation is the main drawback of explicit methods:
nevertheless these methods have been much used because of their sim-
plicity and of the fact that the number of numerical operations at each
step is kept to a minimum. Another approach which is attracting more
attention now is the use of implicit schemes which iead to less severe
stability conditions or which are unconditionally stable; of course this
advantage is counterbalanced by the fact that at each step one must solve
large algebraic systems; this numerical task can be much reduced by
using fractional step methods : splitting methods [81], or alternating
directions methods [16], [66], [67].

No clearcut conclusion can be drawn at this time regarding the
best type of methods (implicit or explicit). The answer might be found
in the use of different schemes in different regions of the flow field :
for instance an implicit one-step method in a strongly viscous flow
region with a very fine mesh, and an explicit two-step method in a
region with small viscous effects (eventually with shock waves) where

a coarse mesh is sufficient.

9. Bibliography

To conclude this lecture, we give a list of references relating to




numerical calculations of viscous compressible flows based on the Navler-
Stokes equations, and grouped according to the type of problem treated.

A. Genersl studies
[29], {39], [46] to [52], [113]).

B. One-dimensional flows
[12], [19], [49]), [51]. [53] to [66]).

C. Two-dimensional tiows

a. Internal flows
iaminar : [11], [18], (67] to [75].
turbulent : [9], [10], [76].
b. Flat plate
[191]. [22), |32], [33], [42]), [60], [61], [75]. [77] to [B1].
c. Shock - boundary layer Interaction
laminar : |42], [60] to [62], [111].
turbulent : [3}, [4], [44].
d. Expansion and compression corners
(82]: [32], [44], [80].
e. Blunt body probiems
Shock iayer flows or shock-capturing methods : [7], [8], [14],
[19], [23], [26], [41], [83] to [89].
Shock-fitting methods : [37), [90] to [93]).
f. Base flows and steps
[5). [28], [29], (79}, [94] to [101).
g. Complete flows around finite bodies
laminar : [6], [27], [57], [79]. [84]. [85]., [102] to [107].
turbulent : [43].

D. Three-dimensional flows
duct flow : [16], [108].
blunt body (shock-fitting) : [109].

E. Various problems
[20], [66]. [72] to [75]). [110].
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